AE 451 Aeronautical Engineering Design I Aerodynamics

Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

Lift curve

Fig. 12.4 Wing lift curve.

Lift curve slope

Fig. 12.5 Lift curve slope vs Mach number.

Subsonic lift curve slope

$$
C_{L_{\alpha}} = \frac{2\pi AR}{2 + \sqrt{4 + \frac{AR^2 \beta^2}{\eta^2} \left(1 + \frac{tan^2 \Lambda_{max,t}}{\beta^2}\right)}} \frac{S_{exposed}}{S}F
$$

Valid until M_{dd} , fairly accurate until $M=1$. $\beta^2 = 1 - M^2$

 η : airfoil efficiency, = 0.95 for most airfoils.

 $F = 1.07(1 + d/b)^2$, fuselage lift factor.

- $AR_{eff} = AR(1 + 1.9 h/b)$; **effective AR with endplates**, h: height of the endplate.
- $AR_{eff} \cong 1.2AR$; effective AR with winglets. LE EAST TECHNICAL UNIVERSITY

Supersonic lift curve slope

• Theory:
$$
C_{L_{\alpha}} = \frac{4}{\beta}
$$

- Practice: use the charts valid for trapezoidal wings.
- Correct the values read with $\frac{S_{exposed}}{S_{exposed}}$ $\mathcal{S}_{0}^{(n)}$ \overline{F}

Supersonic lift curve slope

MIDDLE EAST TECHNICAL UNIVERSITY

• For **moderate to high aspect ratio wings** with moderate sweep and high leading edge radius:

 $C_{L,max} = 0.9c_{L,max}cos\Lambda_{c/4}$

• If a wing has **low AR or high sweep** and a sharp leading edge, maximum lift will increase due to leading edge vortices. This is a function of the shape of the upper surface of the leading edge:

 $\Delta y = y_{0.06c} - y_{0.015c}$

Fig. 12.7 Airfoil leading edge sharpness parameter.

Table 12.1 Δy for common airfoils

• For high aspect ratio wings:

$$
C_{L,max} = c_{l,max} \left(\frac{C_{L,max}}{c_{l,max}} \right) + \Delta C_{L,max},
$$

Correct for F , $\frac{S_{exposed}}{S}$.

$$
\alpha_{C_{L,max}} = \frac{C_{L,max}}{C_{L,\alpha}} + \alpha_{0L} + \Delta \alpha_{C_{L,max}}
$$

Fig. 12.8 Subsonic maximum lift of high-aspect-ratio wings (Ref. 37).

Fig. 12.9 Mach-number correction for subsonic maximum lift of high-aspect ratio wings (Ref. 37).

Fig. 12.10 Angle-of-attack increment for subsonic maximum lift of high-aspectratio wings (Ref. 37).

• A wing has **low AR** if:

$$
AR \le \frac{3}{(C_1+1)\cos \Lambda_{LE}}
$$

$$
C_{L,max} = C_{L,max, base} + \Delta C_{L,max}
$$

$$
\alpha_{C_{L,max}} = \alpha_{C_{L,max, base}} + \Delta \alpha_{C_{L,max}}
$$

Fig. 12.11 Taper-ratio correction factors for low-aspect-ratio wings (Ref. 37).

Fig. 12.12 Maximum subsonic lift of low-aspect-ratio wings (Ref. 37).

Fig. 12.13 Maximum-lift increment for low-aspect-ratio wings (Ref. 37).

Fig. 12.15 Angle of attack for subsonic maximum lift of low-aspect-ratio wings (Ref. 37).

Fig. 12.16 Angle-of-attack increment for subsonic maximum lift of low-aspectratio wings (Ref. 37).

• At transonic speeds, maximum lift is limited by **structural buffeting and controllability** considerations rather than aerodynamics.

Fig. 12.14 Maximum lift adjustment at higher Mach numbers.

Fig. 12.18 Leading-edge devices.

Fig. 12.19 Effects of high-lift devices.

- **Trailing edge devices decrease the stall angle of attack** by increasing the pressure drop over the top of the airfoil promoting flow separation.
- In order to increase α_{stall} a **leading edge device** must be used.

$$
\Delta C_{L,max} = 0.9 \Delta c_{L,max} \frac{S_{flapped}}{S} cos \Lambda_{HL}
$$

$$
\Delta \alpha_{0L} = \Delta \alpha_{0L,airfoil} \frac{S_{flapped}}{S} cos \Lambda_{HL}
$$

HL: hinge line of the high lift device

- For takeoff, the increments of about 60-80% of the increment calculated above should be used.
- Maximum lift occurs at a flap setting of about 40°-45°.

 $\Delta_{\alpha_{0L,airfoil}} \cong -15^o$ (landing setting), $\Delta_{\alpha_{0L,airfoil}} \cong -10^o$ (takeoff setting),

Table 12.2 Approximate lift contributions of high-lift devices

Fig. 12.20 "Flapped" wing area.

- **Leading edge devices** increase lift by:
	- Increasing camber,
	- Increasing wing area,
	- Delaying separation.
- Leading edge devices are particularly useful at **high α**.
- During takeoff and landing, they are useful when in combination with trailing edge devices as they prevent stall.

Estimation of C_{Do}, equivalent skin friction method

$$
C_{Do} = \frac{S_{wet}}{S} C_{fe}
$$

• *Cfe:* equivalent skin friction coefficient is a function of the **Reynolds number**, *Re.*

Figure 2.55 Equilvalent skin-friction drag for a variety of airplanes. (After Jobe, Ref. 27.)

Equivalent skin friction coefficients

Wetted area ratio

Fig. 3.5 Wetted area ratios.

Estimation of C_{Do} , component build-up method

• Total parasite drag coefficient:

$$
C_{Do}^{\text{}}\text{}}_{\text{subsonic}} = \frac{\sum C_{fc} F F_c Q_c S_{wet,c}}{S} + C_{D,\text{mixc}} + C_{D,\text{L\&P}}
$$

 C_{fc} : flat plate skin friction coefficient,

 $C_{fc} = C_{fc}(Re, M, k); k$: skin roughness.

 FF_c : form factor, estimates pressure drag due to separation,

Q: interference factor.

 $C_{D,misc}$: drag of flaps, landing gears, upswept aft fuselage, base area.

 $C_{D,L8P}$: drag of leakages and protuberances.

- Laminar flow: $\mathcal{C}_f = 1.328/\sqrt{Re}$, $Re =$ $\rho_\infty V_\infty l$ μ_{∞} , : characteristic length.
- Turbulent flow:

$$
C_f = \frac{0.455}{(\log Re)^{2.58}(1 + 0.144M^2)^{0.65}}
$$

Fig. 12.21 Flat plate skin friction coefficient vs Reynolds number.

- If the surface is **rough**, the skin friction coefficient will be higher.
- The **smaller** of the cut-off Reynolds number and the actual Reynolds number shall be used.
- Subsonic flow:

$$
Re_{cutoff} = 38.21 (l/k)^{1.053}
$$
,

• Transonic or Supersonic flow:

$$
Re_{cutoff} = 44.62 (l/k)^{1.053} M^{1.16}
$$

Surface	k(f(t))	k(m)
Camouflage paint on aluminum	3.33×10^{-5}	1.015×10^{-5}
Smooth paint	2.08×10^{-5}	0.634×10^{-5}
Production sheet metal	1.33×10^{-5}	0.405×10^{-5}
Polished sheet metal	0.50×10^{-5}	0.152×10^{-5}
Smooth molded composite	0.17×10^{-5}	0.052×10^{-5}

Table 12.4 Skin roughness value (k)

• Wing, tail, strut and pylon:

$$
FF = \left[1 + \frac{0.6}{(x/c)_m} \left(\frac{t}{c}\right) + 100\left(\frac{t}{c}\right)^4\right] \left[1.34 M^{0.18} (\cos \Lambda_m)^{0.28}\right]
$$

 $(x/c)_m$: chordwise location of the maximum thickness point,

 Λ_m : sweep angle at the same location

• Fuselage and smooth canopy:

$$
FF = \left(1 + \frac{60}{f^3} + \frac{f}{400}\right)
$$

$$
f = \frac{l}{d} = \frac{l}{\sqrt{(4/\pi)A_{max}}}.
$$
 fineness ratio.

• Nacelle and external stores:

$$
FF = 1 + \frac{0.35}{f}
$$

- For a tail surface with a hinged control surface: +10%
- A square sided fuselage: +40%
- For a two piece canopy: +40%
- For an external boundary-layer diverter for a fuselage mounted inlet:
	- Double wedge: $FF = 1 + d/l$,
	- Single wedge: $FF = 1 + 2d/l$.

Component interference factors

- Nacelle or external store mounted on wing or fuselage: Q=1.5.
- Nacelle or external store mounted on wing or fuselage: Q=1.3 (if mounted less than one diameter away).
- Nacelle or external store mounted on wing or fuselage: Q=1.1 (if mounted more than one diameter away).
- Wingtip mounted missiles: Q=1.25.
- High-wing, mid-wing or a well-filleted low-wing: Q=1.0.
- Unfilleted low-wing: Q=1.1-1.4.
- Fuselage: Q=1.0.
- Tail surfaces: Q=1.03 (V-tail), 1.08 (H-Tail), 1.04-1.05 (conventional tail).

DLE EAST TECHNICAL UNIVERSITY

• Upswept aft fuselage:

$$
\frac{D}{q} = 3.83\theta^{2.5} A_{max}.
$$

Fig. 12.26 Fuselage upsweep.

- Landing gear: summation of the drags of the wheels, struts, and other gear components.
- Q=1.2, *1.07 for retractable landing gears accounting for the hollow landing gear well.

	D/q	
	Frontal area	
Regular wheel and tire	0.25	
Second wheel and tire in tandem	0.15	
Streamlined wheel and tire	0.18	
Wheel and tire with fairing	0.13	
Streamline strut $(1/6 < t/c < 1/3)$	0.05	
Round strut or wire	0.30	
Flat spring gear leg	1.40	
Fork, bogey, irregular fitting	$1.0 - 1.4$	

Table 12.5 Landing gear component drags

• Flaps:

$$
\Delta C_{Do,flap} = F_{flap} \left(\frac{c_{flap}}{c} \right) \frac{S_{flapped}}{S} \left(\delta_{flap} - 10^o \right).
$$

$$
F_{flap} = 0.0144
$$
: plain flaps,

$$
F_{flap} = 0.0074
$$
: slotted flaps.

• Speed brakes:

Fuselage mounted:
$$
\frac{D}{q} = 1.0A_{frontal}
$$

Wing mounted: $\frac{D}{q} = 1.6A_{frontal}$

• Canopies (transport and light aircraft):

$$
\frac{D}{q} = 0.50 A_{frontal,wind\, shield}
$$

• Cannon port:

$$
\frac{D}{q} = 0.2 \text{ ft}^2.
$$

Leakage and protuberance drag

- Antennas, lights, door edges, fuel vents, control surface external hinges, actuator fairings, rivets, rough or misaligned panels…
- Jet transports and bombers: 2-5% parasite drag,
- Propeller aircraft: 5-10%,
- Fighters: 10-15% (old), 5-10% (new).

Supersonic Wave Drag

• For supersonic skin friction drag $Q = FF = 1$.

$$
C_{D0})_{s.sonic} = \frac{\sum C_{fc} S_{wet}}{S} + C_{D,miss} + C_{D,L\&P} + C_{D,wave}
$$

- Leakage and protuberance drag percentages apply only to skin-friction drag.
- For preliminary wave drag analysis ($M \geq 1.2$):

$$
\frac{D}{q}\bigg)_{wave} = E_{wd} \left[1 - 0.386(M - 1.2)^{0.57} \left(1 - \frac{\pi \Lambda_{LE, deg}^{0.77}}{100} \right) \right] \frac{D}{q} \bigg)_{\text{Sears-Haack}}
$$

Sears-Haack body

Supersonic wave drag

• E_{wd} : wave drag efficiency factor.

=1.0 for a perfect Sears-Haack body,

=1.2 for a smooth volume distribution, blended delta wing,

=1.8-2.2 for a supersonic fighter, bomber.

•
$$
\frac{D}{q}
$$
 $\int_{Sears-Haack} = \frac{9\pi}{2} \left(\frac{A_{max}}{l}\right)^2$; subtract inlet capture area.

 l : aircraft length – length with constant cross sectional area.

• Boeing formulation:

$$
M_{DD} = M_{DD,L=0} L F_{DD} - 0.05 C_{L, design} (wing).
$$

Fig. 12.28 Wing drag-divergence Mach number.

Fig. 12.29 Lift adjustment for M_{DD} .

Fig. 12.30 Body drag-divergent Mach number.

 L_n : length of fuselage from nose to the location where fuselage cross section becomes constant.

 d : equivalent diameter of the fuselage there.

Choose the **smaller** of the M_{dd} found for wing and fuselage for the drag divergence Mach number of the airplane.

For initial analysis:

Fig. 12.31 Transonic drag rise estimation.

- $M \geq 1.2$: use supersonic wave drag expression.
- $C_{D-wave}(M = 1.05) = C_{D-wave}(M = 1.2)$.

•
$$
C_{D,wave}(M = 1.0) = \frac{C_{D,wave}(M=1.05)}{2}
$$
.

•
$$
M_{cr} = M_{DD} - 0.08
$$
.

• $C_D(M_{DD}) = C_D(M_{cr}) + 0.002$.

Complete drag build-up

- **Subsonic drag:** skin friction drag (including form factor and interference) + miscellaneous drag + leakage & protuberance drag
- **Supersonic drag:** skin friction drag + miscellaneous drag + leakage and protuberance drag + wave drag.

Complete drag build-up

Fig. 12.32 Complete parasite drag vs Mach number.

Complete drag build-up

Fig. 12.33 Parasite drag and drag rise.

Drag due to lift (induced drag)

• Induced drag coefficient:

$$
K = \frac{1}{\pi A Re}
$$

• Straight-winged airplane:

$$
e = 1.78(1 - 0.045AR^{0.68}) - 0.64 \left(\Lambda_{LE} < 30^{\circ}\right)
$$

• Swept winged airplane:

 $e = 4.61(1 - 0.045AR^{0.68})\cos\Lambda_{LE}^{0.15} - 3.1\left(\Lambda_{LE} > 30^{\circ}\right)$

• At supersonic speeds:

$$
K = \frac{AR(M^2 - 1)}{4AR\sqrt{M^2 - 1} - 2}\cos\Lambda_{LE}
$$

Drag due to lift (induced drag)

• Flap effect on induced drag:

$$
\Delta C_{Di} = K_f^2 (\Delta C_{L,flap})^2 \cos \Lambda_{\bar{c}/4},
$$

\n
$$
K_f = 0.14
$$
: full span flaps,
\n
$$
K_f = 0.28
$$
: partial span flaps.