Stability of Three-Dimensional Boundary-Layers

AE 549 Linear Stability Theory and Laminar-Turbulent Transition

Prof. Dr. Serkan ÖZGEN

Spring 2016-2017

Three-dimensional stability

- A fundamental difference between the stability of 3-D and 2-D boundary-layers is that a 3-D boundary-layers is subject to crossflow instability.
- To understand the effect of three-dimensioanlity of the mean flow on stability, it is necessary to have a family of boundarylayers, where the magnitude of the crossflow can be varied in a systematic manner.
- The two-parameter yawed-edge (swept leading edge) flows are suitable for this purpose resulting in Falkner-Skan-Cooke family of profiles.

Flow geometry for three-dimensional b.l. flow

3-D flow with pressure gradient

- The two parameters are:
 - Falkner-Skan or Hartree parameter β_{H} ,
 - Flow angle θ , which is the ratio of the spanwise freestream velocity to the chordwise freestream velocity, $\tan \theta = W_{sl}^* / U_{cl}^*$.
- The inviscid velocity in the plane of the wedge and normal to the leading edge (in x_c-direction, i.e. chordwise velocity) is defined as:

 $U_{ce}^* = C^* x_c^{*m},$

where the wedge angle is $\beta \pi/2$ and $\beta = 2m/m + 1$, with *m* being the dimensionless pressure gradient defined as:

$$m = \frac{x_c^*}{U_{ce}^*} \frac{dU_{ce}^*}{dx_c^*}$$

The velocity parallel to the leading edge (in z_s direction, i.e. spanwise velocity) is

 $W_{se}^* = constant.$

3-D flow with pressure gradient

• Flow in the chordwise direction, x_c is defined by the Falkner-Skan equation, which is independent of the spanwise flow, and $f' = U_c$:

$$2f''' + ff' + \beta_H(1 - f'^2) = 0.$$

• Falkner-Skan length scale is defined as:

$$L^* = \left[\frac{v^* x_c^*}{(m+1)U_{ce}^*}\right]^{1/2}$$

Once f is solved, flow in the spanwise direction, z_s is defined from the following equation:

$$g^{\prime\prime}+fg^{\prime}=0,$$

where $g = W_s^* / W_{se}^*$.

Boundary conditions:

f'(0) = g(0) = 0, (no slip) $f'(y) \rightarrow 1, g(y) \rightarrow 1$ as $y \rightarrow \infty$. (freestream)

3-D flow with pressure gradient

Dimensionless streamwise (x-direction) and crossflow (z-direction) velocity components:

 $U(y) = f'(y)\cos^2\theta + g(y)\sin^2\theta,$

 $W(y) = [-f'(y) + g(y)] \cos \theta \sin \theta.$

- Falkner-Skan parameter β fixes both f'(y) and g(y).
- It can be seen from the above equation that all crossflow profiles W(y) have the same shape for a given pressure gradient, i.e. β value.
- Magnitude of the crossflow velocity will change with flow direction θ .
- However, streamwise profiles U(y) will change shape as θ varies.

Velocity profiles for $\beta_H = -0.05$ and $\theta = 45^{\circ}$

Velocity profiles for $\beta_H = 0$ and $\theta = 45^{\circ}$

Velocity profiles for $\beta_H = 0.1$ and $\theta = 45^{\circ}$

Composite profile for $\beta_H = -0.1$ and $\theta = 45^{\circ}$

Neutral stability curves for $\beta_H = -0.1$

Neutral stability curves for $\beta_H = 0.1$

Effect of flow angle on Re_{cr} for $\beta_H = -0.1, 0, 0.1$

Conclusions

- For $\beta < 0$, increasing flow angle renders the flow more stable.
- For $\beta > 0$, increasing flow angle renders the flow more unstable.
- Flow angle has no effect on stability when $\beta = 0$.
- When the flow angle is around 0^o, the critical Reynolds number of the threedimensional flow is very close to that of the two-dimensional flow.

When $\theta = 0^o$, U(y) = f' and W(y) = 0.

• When the flow angle is $\theta = 90^{\circ}$, the critical Reynolds number of the threedimensional flow is very close to that of the Blasius flow($\beta = 0^{\circ}$).

When $\theta = 90^{\circ}$, U(y) = g, which is very close to the Blasius profile and W(y) = 0.