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Three-dimensional stability

® A fundamental difference between the stability of 3-D and 2-D
boundary-layers is that a 3-D boundary-layers is subject to
crossflow instability.

® To understand the effect of three-dimensioanlity of the mean
flow on stability, it is necessary to have a family of boundary-
layers, where the magnitude of the crossflow can be varied in a
systematic manner.

® The two-parameter yawed-edge (swept leading edge) flows
are suitable for this purpose resulting in Falkner-Skan-Cooke
family of profiles.




Flow geometry for three-dimensional b.l. flow
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3-D flow with pressure gradient

® The two parameters are:
o Falkner-Skan or Hartree parameter Sy,

o Flow angle 8, which is the ratio of the spanwise freestream velocity to the
chordwise freestream velocity, tan 8 = W;/U;.

® The inviscid velocity in the plane of the wedge and normal to the leading edge (in x-
direction, i.e. chordwise velocity) is defined as:

Uz, = C*x2™,

where the wedge angle is fr/2 and B = 2m/m + 1, with m being the dimensionless
pressure gradient defined as:

Xz dUge
Uze dx;

m =

® The velocity parallel to the leading edge (in z, direction, i.e. spanwise velocity) is

4

W = constant.



3-D flow with pressure gradient

Flow in the chordwise direction, x, is defined by the Falkner-Skan equation, which is
independent of the spanwise flow and f' = U,:

2f"" + ff' +By(1—f"?) = 0.

Falkner-Skan length scale is defined as:
—— 1/2
= - ]

h (m + 1)U:e

Once f is solved, flow in the spanwise direction, z; is defined from the following
equation:

g'+f9' =0,
where g = W." /We,.
Boundary conditions:
f'(0) =g(0) =0, (noslip)
f'y)—>1,9g(y) 1 as y— oo. (freestream) :




3-D flow with pressure gradient

Dimensionless streamwise (x-direction) and crossflow (z-direction) velocity
components:

U(y) = f'(y) cos? 8 + g(y)sin®6,
W) =[-f'(y) + gy)]cos 6 sin6.
Falkner-Skan parameter 8 fixes both f'(y) and g(y).

It can be seen from the above equation that all crossflow profiles W (y) have
the same shape for a given pressure gradient, i.e. 5 value.

Magnitude of the crossflow velocity will change with flow direction 6.

However, streamwise profiles U(y) will change shape as 0 varies.




Velocity profiles for fy = —0.05 and 8 = 45°

f" and g for Beta=-0.05
U and W for Beta= -0.05 with Theta = 45 deg
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Velocity profiles for 5 = 0and 8 = 45°

f' and g for Beta =0.0 U and W for Beta= 0.0 with Theta= 45 deg
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Velocity profiles for fy = 0.1 and 8 = 45°

f' and g for Beta =0.1
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Composite profile for fy = —0.1and 8 = 45°




Neutral stability curves for 5 = —0.1
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Neutral stability curves for 5 = 0.1
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Effect of flow angle on Re,,- for Sy = —0.1,0, 0.1
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Conclusions

For <0, increasing flow angle renders the flow more stable.
For >0, increasing flow angle renders the flow more unstable.
Flow angle has no effect on stability when § = 0.

When the flow angle is around 0°, the critical Reynolds number of the three-
dimensional flow is very close to that of the two-dimensional flow.

When 0 = 0°,U(y) = f and W(y) = 0.

When the flow angle is 8=90°, the critical Reynolds number of the three-
dimensional flow is very close to that of the Blasius flow(f = 0°).

When 6 = 909, U(y) = g, which is very close to the Blasius profile
and W(y) = 0.




