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Three-dimensional stability

• A fundamentaI difference between the stability of 3-D and 2-D 
boundary-layers is that a 3-D boundary-layers is subject to
crossflow instability.

• To understand the effect of three-dimensioanlity of the mean
flow on stability, it is necessary to have a family of boundary-
layers, where the magnitude of the crossflow can be varied in a 
systematic manner. 

• The two-parameter yawed-edge (swept leading edge) flows
are suitable for this purpose resulting in Falkner-Skan-Cooke
family of profiles.
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Flow geometry for three-dimensional b.l. flow
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3-D flow with pressure gradient
• The two parameters are:

o Falkner-Skan or Hartree parameter 𝛽𝐻,

o Flow angle 𝜃, which is the ratio of the spanwise freestream velocity to the
chordwise freestream velocity, tan 𝜃 = 𝑊𝑠𝑙

∗/𝑈𝑐𝑙
∗ . 

• The inviscid velocity in the plane of the wedge and normal to the leading edge (in 𝑥𝑐-
direction, i.e. chordwise velocity) is defined as:

𝑈𝑐𝑒
∗ = 𝐶∗𝑥𝑐

∗𝑚,

where the wedge angle is 𝛽𝜋/2 and 𝛽 =  2𝑚 𝑚 + 1, with 𝑚 being the dimensionless
pressure gradient defined as:

𝑚 =
𝑥𝑐
∗

𝑈𝑐𝑒
∗

𝑑𝑈𝑐𝑒
∗

𝑑𝑥𝑐
∗

• The velocity parallel to the leading edge (in 𝑧𝑠 direction, i.e. spanwise velocity) is 

𝑊𝑠𝑒
∗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
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3-D flow with pressure gradient
• Flow in the chordwise direction, 𝑥𝑐 is defined by the Falkner-Skan equation, which is 

independent of the spanwise flow, and 𝑓′ = 𝑈𝑐:

2𝑓′′′ + 𝑓𝑓′ + 𝛽𝐻 1 − 𝑓′2 = 0.

• Falkner-Skan length scale is defined as:

𝐿∗=
𝑣∗𝑥𝑐

∗

𝑚 + 1 𝑈𝑐𝑒
∗

1/2

.

• Once 𝑓 is solved, flow in the spanwise direction, 𝑧𝑠 is defined from the following 
equation:

𝑔′′ + 𝑓𝑔′ = 0,

where 𝑔 = 𝑊𝑠
∗/𝑊𝑠𝑒

∗ .

• Boundary conditions:

𝑓′(0) = 𝑔(0) = 0,     (no slip)

𝑓′(𝑦) → 1, 𝑔(𝑦) → 1 as     𝑦 → ∞.     (freestream)

.
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3-D flow with pressure gradient

• Dimensionless streamwise (x-direction) and crossflow (z-direction) velocity
components:

𝑈 𝑦 = 𝑓′ 𝑦 cos2 𝜃 + 𝑔(𝑦)sin2𝜃,

𝑊 𝑦 = −𝑓′ 𝑦 + 𝑔 𝑦 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃.

• Falkner-Skan parameter 𝛽 fixes both 𝑓′ 𝑦 and 𝑔(𝑦).

• It can be seen from the above equation that all crossflow profiles 𝑊(𝑦) have
the same shape for a given pressure gradient, i.e. 𝛽 value.

• Magnitude of the crossflow velocity will change with flow direction 𝜃.

• However, streamwise profiles 𝑈(𝑦) will change shape as 𝜃 varies.
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Velocity profiles for 𝛽𝐻 = −0.05 and 𝜃 = 45°
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Velocity profiles for 𝛽𝐻 = 0 and 𝜃 = 45°
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Velocity profiles for 𝛽𝐻 = 0.1 and 𝜃 = 45°
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Composite profile for 𝛽𝐻 = −0.1 and 𝜃 = 45°
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Neutral stability curves for 𝛽𝐻 = −0.1
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Neutral stability curves for 𝛽𝐻 = 0.1
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Effect of flow angle on 𝑅𝑒𝑐𝑟 for 𝛽𝐻 = −0.1, 0, 0.1
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Conclusions

• For β<0, increasing flow angle renders the flow more stable.

• For β>0, increasing flow angle renders the flow more unstable.

• Flow angle has no effect on stability when β = 0.

• When the flow angle is around 0𝑜, the critical Reynolds number of the three-
dimensional flow is very close to that of the two-dimensional flow.

When θ = 0𝑜 , 𝑈 𝑦 = 𝑓′ and 𝑊 𝑦 = 0.

• When the flow angle is θ=90°, the critical Reynolds number of the three-
dimensional flow is very close to that of the Blasius flow 𝛽 = 0° .

When θ = 90𝑜, 𝑈 𝑦 = 𝑔, which is very close to the Blasius profile                     
and 𝑊 𝑦 = 0.
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