

EXECUTIVE SUMMARY

29TH ANNUAL AHS INTERNATIONAL DESIGN COMPETITION UNDERGRADUATE CATEGORY

Eliya Wing Juan Pablo Afman Michael Avera Michael Burn Christopher Cofelice Peter Johnson

Gr BADGER

Robert Lee Ian Moore Travis Smith Gökçin Çınar Özge Sinem Özçakmak Yakut Cansev Küçükosman

CONCEPT DESIGN SUMMARY

BADGER SPECIFICATIONS						
WEIGHTS	Units	Va	lue			
Empty Weight	lbs	2148				
Max. Gross Weight	lbs	28	00			
GTOW	lbs	25	00			
Payload	lbs	30	00			
Max. Fuel Weight	lbs	12	27			
PERFORMANCE @ S.L. 103 F	Units	GW 2500 lbs	GW 2800 lbs			
Max. Cruise Speed	kts	175.9	174.2			
Speed at 90% MCP	kts	165.7	164.1			
Best Range Speed	kts	119.8	123.6			
Best Endurance Speed	kts	68.6	73.1			
Max. Sideward Flight Speed	kts	65.5	37			
Max Sustained Load Factor	G	3.11				
Course Time	S	247.8				
POWER PLANT	Units	Va	lue			
Number of Engines		1				
MRP @2 min 103°F S.L	hp	550				
MCP @ 103°F S.L	hp	424				
GENERAL DIMENSIONS	Units	Va	lue			
Number of Blades (per rotor)		2	2			
Main Rotor Diameter	ft	24	1.8			
Main Rotor Blade Chord	ft	0.	66			
Main Rotor Disk Loading	lbs/ft ²	2.	58			
Tip Speed	ft/s	67	70			
Propeller Diameter	ft	(5			
Flat Plate Area Forward Flight	ft ²	-	7			
Flat Plate Area Sideward Flight	ft ²	4	1			

GEORGIA TECH ROTORCRAFT CENTER OF EXCELENCE

A NEW TWIST ON INTERMESHING

This ain't your mama's "air mule"
Fact: The Badger is no simple "air mule".
It has been designed to be a fast and maneuverable pylon racing helicopter

	Buugei	
Max speed @ SL STD	170 Knots	100 Knots
Translational speed	63 Knots	11.9 Knots
Max TOGW	2500 lbs	12000 lbs
Power	400 hp	1500 hp
Disk loading	2.59 lbs/ft ²	3.28 lbs/ft ²
Diameter	24.8 ft	48.25 ft
Overall Length	25 ft	52 ft
RFP η/Max TOGW (without time)	$.476 = \frac{5 * 128lbs + 550hp}{2500lbs}$	$.75 = \frac{5 * 1492lbs + 1500hp}{12000}$

ACKNOWLEDGEMENT OF REQUIREMENTS

Max start speed <100 ktsMax bank angle of 90° Slung load capabilities HOGE take off @S.L. 103°F, TOGWCruise at min of 125 kt @90 % MCP60 kts SW flight @ S.L 103°F, TOGWTime Estimates Fuel burned throughout mission η Function	One 225 lbs pilot 10 min warm up time 5 min to takeoff 5 min to takeoff 15 min fuel reserve @V _{BR} 15 ft safety zone Minimum clearance Minimum clearance of one rotor radius from moving components MIL STD 850B visibility Floatation/Fire protection for pilot	Accounted power installation factors Inboard/outboard profiles of helicopter Weight allocations for all components (MIL STD 1374) Pilot feedback Preliminary structural design Avionics suite meeting min FAA req. for NY VFR corridor
---	--	--

DIMENSIONS

Length Overall	25.17 ft
Overall height	12.67 ft
Fuselage width	4.33 ft
Rotor diameter	24.8 ft
Disk loading	2.58 lbs/ft ²

ENGINE RATING

(ISA, S.L. 103°)	
Number of Engines	1
МСР	424 hp
MRP @ 2 min	550 hp

WEIGHT

2800 lbs
2148 lbs
127 lbs
225 lbs
300 lbs

PERFORMANCE

TOGW@ 2500 lbs (ISA, S.L. 103°)

Best endurance speed	68.4 kts
Best range speed V_{BR}	119.8 kts
Max. speed	175.9 kts
Speed at 90% MCP	165.7 kts
Sideward Flight Speed	65.5 kts

INTERMESHING DECISION

/
\
the state

Intermeshing compared to:

Pros

Cons

forward flight -Smaller fuselage length -Very easy on the pilot -No tail: more power for main rotors

-Higher drag -Higher HP Required -Not as much control in yaw

-Very easy on the pilot in terms of controls

- Lower Induced HP Required

-Slightly smaller footprint and width

-Some loss in lift due to canted rotors (%2)

• TOPSIS

DESIGN SELECTION

Georgia Tech's Integrated Product/Process Development was used during the development of The BADGER

WEIGHT BREAKDOWN

Several trade studies were conducted with respect to material decisions. The primary objective was to effectively choose technologically advanced materials and manufacturing methods that would result in weight reduction while keeping in mind the aircraft's structural integrity, pilot safety and cost effectiveness.

DRAG BUILDUP

Component

Parasite Drag (ft^2)

Empirical drag build-up for forward flight Flat Plate Area (EFPA) of 7.2 ft2

• Computational Fluid Dynamics was used to determine sideward flight Equivalent Flat Plate Area = 41 ft2. This allowed The BADGER team to determine and overcome the thrust required to meet RFP requirement of 60kt sideward flight.

PERFORMANCE ANALYSIS

• Successfully outperforms RFP performance requirements with the use of auxiliary propulsion in the form of a pusher propeller for both increased acceleration and deceleration properties. **Badger Capabilities**

176 kts max speed @ 103F

60 kts sideward flight

166 kts max speed at 90% MCP

Hover at S.L/103° F with and without 300 lbs load

• Sized to a standard atmospheric temperature of 103 degrees Farenheight, The BADGER's performance characteristics allow it not only to perform, but outperform the competition even in demanding weather conditions.

Parameter (103F)	GW = 2500lbs	GW = 2800lbs	
Best range speed	119.8312 knots	123.5676 knots	
Best endurance speed	68.5893 knots	73.1264 knots	
Maximum speed	175.8769 knots	174.2756 knots	
Speed at 90% MCP	165.7353knots	164.134knots	

Outstanding Lift to Drag Ratios

The BADGER is able to achieve a 4k ft/min maximum rate of climb

A plot of minimum turning radius versus velocity was necessary to ensure that our helicopter was capable of performing certain maneuvers expected in the race such as the 300 ft 180 degree turn in the beginning of the track.

CONTROLS AND HANDLING QUALITIES

- Nonlinear synchropter model built in HeliDyn
- Controller Design Includes:
 - o SAS
 - Attitude Command Attitude Hold
 - Rate Command Attitude Hold
 - Velocity Hold
 - Altitude hold

Figure 43 Pilot Roll Input and Augmented **Response in Hover using ACAH**

Figure 45 Pilot Roll Step Input, Roll Rate and Roll Angle Response using RCAH at 80 knots

Figure 46 Pilot Pitch Step Input, Pitch Rate and Pitch Angle Response using RCAH at 80 knots

Figure 44 Pilot Pitch Input and Augmented Response in Hover using ACAH

Figure 42 Forward Velocity Command Response

• Fly by Light Architecture

Gr BADGER

- Replaces mechanical linkages with electronic actuators
- Reduces weight through use of fiber optic cable
- Less susceptible to electromagnetic interference than fly by wire systems
- Electronic actuators allow for easy implementation of a flight control system computer and quick response time which is crucial for a highly maneuverable and agile rotorcraft
- Level 1 Handling Qualities

Gr BADGER

MAIN ROTOR DESIGN

15 ft safety clearance at staging grounds

Minimum of one rotor radius clearance

Clearance through course pylons

• Low Disk loading

- o Better maneuverability
- o Limited by RFP size Restrictions

- High Aspect Ratio
 - Decrease in Power Required
 - Structural chord > .05ft
- Highest tip speed possible
 - Increased performance
 - Increased maneuverability
 - o Based on VR7b airfoil data
- Blade Element Momentum Theory (BEMT)
 - $\circ~$ Used to find optimum airfoil and blade twist

Specifications

Blades per rotor	2
Disk Loading (ft)	2.58
Radius (ft)	12.4
Chord	0.67
Tip speed (ft/s)	670
Aspect ratio,	18.6
Total twist	-10.5°
Root pitch at operating conditions	10.62°
Tip pitch at operating conditions	.125°
Airfoil	VR7B

HUB DESIGN

Teetering hub with hub spring and feathering bearing. Elastomeric hub spring gives control power at <1 G maneuvers

• Angle of mast of 13° with 1° precone angle for max flapping angle clearance

• Ideal mast separation allows Induced Horsepower to be lower than a typical coaxial rotor configuration

AUXILIARY PROPULSION

- Used to reduce the effective flat plate drag during accelerations
- Removes tendency of rotor to pitch rearward in forward flight

Diameter	6 ft
Mean Chord	.425 ft
Bat .75c	28.1°
Number of Blades	6
Solidity	.271
	MH 126
Airfoils	MH 112
	MH 116
Performance	
V/nD	1.026
Thrust	511lbs
Power Required (@ 170 knots)	146.4 hp
Efficiency	79%
RPM	2300

- Sized to produce enough thrust to counteract 80% of drag at 140 kts forward speed
- Badger incorporates a one sided rotatable horizontal stabilizer to cancel torque produced by aux prop

TRAJECTORY OPTIMIZATION

Optimal control theory combined with human-pilot based constraints
 O GPOPS (General Pseudospectral OPtimal control Software)

Best time of 4 minutes and 8 seconds

TRANSMISSION DESIGN

Adequate transmission sizing was performed

	Stage 1		Stage 2		Stage 3		Aux Spur	
	Pinion	Gear	Pinion	Gear	Pinion	Gear	Pinion	Gear
Diameter (in)	4.65	4.65	4.00	10.64	2.83	11.32	3.00	7.83
Face Width (in)	1.50	1.50	1.50	1.50	2.64	2.64	0.90	0.90
Teeth	20	20	20	53	15	60	15	39

ENGINE SIZING

RFP Requirements

125 knots at 90% MCP

Ability to pull a 3g turn (limiting factor)

Ability to fly 60 knots sideways

Must minimize the scoring function by finding the minimum MRP required and minimum fuel consumption

Scaled engine using equations given in RFP

Engine Parameters				
Diameter	11.3 in			
Length	24.6 in			
Weight	141 lbs			

 $\begin{aligned} \text{Diameter} &= 2.117 \cdot \left(\text{MRP}_{\text{Unninstalled}, \text{SL/ISA}} \right)^{0.3704} \\ \text{Length} &= 2.622 \cdot \left(\text{MRP}_{\text{Uninstalled}, \text{SL/ISA}} \right)^{0.4148} \end{aligned}$

• Appropiate calibrations were performed on The BADGER's engine to comply with RFP regulations and requirements

	SL/ISA		SL/1	03°F	6K/95°F		
	Цр	SFC (lb/bp*br)	HD	SFC	ЦD	SFC (lb/bp*br)	
OEI	703.6	0.378	581.5	0.392	474.2	0.390	
MRP	672.1	0.379	550.0	0.396	445.4	0.395	
IRP	626.5	0.384	508.4	0.403	409.8	0.402	
МСР	512.4	0.398	415.2	0.424	338.0	0.422	
Part Power	336.0	0.448	275.0	0.490	222.7	0.486	
Idle	134.1	0.706	110.0	0.824	89.2	0.816	

STRUCTURAL AND INTERNAL LAYOUT

- Lightweight aluminum airframe composed of I beams, box beams, and solid beams
- Two primary bulkheads to carry crash loads and main aerodynamic loads
- Nose plate used to connect bottom I beam two side box beam longerons
- Advantageously placed internal systems to maintain a center of gravity along the auxillary propulsion thrust vector
- Internal systems attached to upper I beam and longerons as well as front bulkhead to optimize load paths

Gr BADGER

- Load hook mounted on the bottom I beam to support 300 lb slung load
- Aluminum hollow tube crashworthy landing gear
- FEA landing gear and airframe test conductued using ANSYS static strucural toolbox
- Crash loads approximated with a 2g load factor on landing gear supports and 4g on airframe

SAFETY CAPABILITIES

5 Point harness BAE S7000 crashworthy seat that meets MIL – 58095A and MIL – STD -810 safety requirements

- Phantom 5 minute emergency oxygen tank allowing pilot to survive underwater while emergency personnel perform rescue mission
- Portable and compact fire extinguisher that allows The BADGER to comply with the requirements given by the 2012 RFP regarding fire protection

- Small and light weight military designed inflatable raft which allows The BADGER to comply with the requirements given by the 2012 RFP regarding flotation for the pilot
- Autorotative index of 22.5 for the unfortunate case of an engine failure during the race

COCKPIT DESIGN

High-visibilitycockpitdesign based on MarencoSwisshelicopterConcept.PlanesOfVisionMILSTD-850Brequirements

- Heads-Up Display (HUD) projecting optimized trajectory course onto windshield for pilot aid during race
- Dynon Skyview 7" Electronic Flight Instrumentation System (EFIS)
- Contains Primary Function Display (PFD), Moving Map, and Engine Monitoring
- Installed with "soft stop" alerting system (EICAS) to alert pilot in event of critical engine levels or approaching any helicopter limits

 Quick release switch for cargo hook in case of an unexpected emergency landging is required

TOP TEN TRADE STUDIES

COST ANALYSIS

- 1. Intermeshing vs. Other Configurations
- 2. Auxiliary Yaw control
- 3. Auxiliary Forward propulsion
- 4. Hub Configuration
- 5. Main Rotor and Airfoil selection
- 6. Mast Separation
- 7. Transmission Selection
- 8. Electric Propulsion
- 9. Material Selection
- 10. Cockpit Technologies

• Based off of the trade study results, all technologies used are currently on the market

• The Badger is a TRL of 7.5, this places it in "The System Development phase"

• Five Year Expected Production

10	otal Burde	ened Cost for Aver	age of 1 Aiı	rcraft, 2	2001\$						
Previous Sc	reen		otal Avera	ge Cost	t by System						
		Labor	Material	Su	bcontract	Tota					
Wing		\$0	\$0		\$0	\$ 0					
		\$0	\$0		\$0	\$0					
	4 1	ali Oniu			100		IVZ	1	1	305	
Rotor	3 Nace	les			\$123,0	44	\$29,889	\$1,0	079	\$154,012	
Hub	4 F	irewall			\$36,80)1	\$9,050	\$7	59	\$46,610	
Blade	5 C	owling			79,50	2	15,091	16	53	94,755	
	6 E	ngine Mounts			6,741		5,748	15	7	12,647	
	7					_			J	_	
	3			Flight	Controls			\$5,130	\$42,15	0 \$34,812	\$82,091
	a Air In	duction		Co	ockpit contro	ols		\$0	\$10,63	9 \$4,435	\$15,075
ail	ο <u>Δ</u>	ir Inlet									
Vertical Stabilizer	1 10	let Particle Ser	arator	N		t l -		0	42.404	4 704	45.004
Horizontal Stabilize	Down	relant	urator	D	offering contra	ole - mai	a rotor	1 938	16,45	2 / 17	21 311
Tailrotor	2 FOWE	ipiant		R	otating contr	ols - tail	rotor	3 192	1 064	1 263	5.518
uselage		ingine	-	R	otor hydraulie	c actuato	rs	0	0	24,966	24,966
Basic Structure		ingine installatio	n	n							
Windows	5 E	jector									
Crew Doors	5 I	ailpipe									
Passenger Doors	7 E	ngine Controls									
Baggage Door	8 E	ingine Start Sys	Start System Auxiliary Power Unit			\$1,863	\$/5	\$155,369	\$157,307		
Compartment Door	<u>9 E</u>	ngine Wash	Wash Instruments		\$4,075	\$228	\$35,501	\$39,803			
Floor) L	ubrication Syste	m	Hydraulics Electrical		\$1,342	\$1,003	5 604 010	315,504 COA COE		
Tailboom	1 F	uel System		Avioni	ice			\$8.270	\$20,50	\$21,010	\$30,305
Pylon Support	2			Ation	103			00,210	\$15 <u>2</u>	VZ 1,243	\$30,303
	3 Drive	System		Furnis	hings and l	Fauipme	ont	\$0	\$12.09	2 \$7,209	\$19,302
_anding Gear	4 N	lain Transmissi	on and Ma	Cr	rew Seats			\$0	\$3,254	\$2,969	\$6,223
Landing Gear	5 T	ailrotor Gearbox		Passenger Seats			0	0	1,184	1,184	
Tail Skid	S I			Fi	re Extinguis	hing		0	1,764	1,105	2,869
Nacelles	7			S	oundproofing			0	0	1,685	1,685
Firewall	3 F	reewheeling Up	+	M Altr C	iscellaneous	rumishi	ngs	U 61.562	1,075	26/	/,341
Cowling		reewneeling On		AIT CO	eed air, hoof	and do	ing	\$1,362	\$3,613	31,30/	\$6.942 \$6.942
Engine Mounts		naine lenut Che	A		eeu air, ileal	, anu de	~y	91,502	00,010	γ ψ1,007	40,542
		ingine input Sha	n. A	<u> </u>				\$0	\$0	\$0	\$ 0
		allrotor Drivesha	n	Load	and Handlii	ng		\$0	\$3,817	7 \$0	\$3,817
	-			Final <i>i</i>	Assembly			\$133,068	\$0	\$0	\$133,068
	3 Flight	t Controls		Subto	tals			\$535.611	\$426.19	90 \$728.124	\$1.689.926

Engineering	
Design	\$24,410,000
Flight Test	\$3,251,000
Component Test	\$10,387,000
Systems Engineering/Project Management	\$3,173,000
Total Engineering	\$41,221,000
Manufacturing Engineering	
Planning, Loft, Other	\$7,315,000
Project Management	\$611,000
Total Manufacturing Engineering	\$7,926,000
Tooling	
Tool make	\$9,245,000
Outside Tooling	\$5,403,000
Total Tooling	\$14,648,000
Manufacturing	
Prototype	\$2,496,000
No GTV, STA, or FTA Required	\$0
Flight Test	\$2,197,000
Component Test	\$8,790,000
Total Manufacturing	\$13,483,000
Logistics	\$224,000
Other	
Travel and Per Diem	\$941,000
Direct Expense	\$4,838,000
Total Other	\$5,779,000
Total Program	\$83,281,000

• Average production cost per helicopter: <u>\$1,689,926</u>

GT – BADGER : WE'LL SEE YOU AT THE RACE LINE

- The BADGER's official η = 1380.6
- All RFP requirements are 100% satisfied
- The BADGER is a highly maneuverable unconventional agile rotorcraft
- Its unique intermeshing rotor configuration separates it from conventional designs
- The auxiliary propulsion system allows for incredible acceleration and deceleration during the race

RFP Requ

Capability

Hover at S.

125 kts at

60 kts trans

15 ft safety

Fuel reserv

MIL STD-85

Avionics su

Contains fl

irements	The Badger
o perform all mission segments	✓
L/103° F	1
0% MCP	
slational flight at S.L/103°F	
clearance at staging grounds	
e of 15 minute flight at V _{BR} and TOGW	
OB Vision requirements	1
ite in according to FAA requirements in NY VFR corridor	
patation and fire protection for pilot	

