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ABSTRACT 
 
 

This paper presents a computationally efficient technique for the determination of 
the optimal size and spatial mapping of distributed actuators on a flexible structure to 
suppress vibrations in a H∞ control design framework. The cost of the computations 
required in the H∞ based optimization algorithm is reduced by using an efficient feasibility 
test. The feasibility test penalizes the candidates for the actuator size and locations resulting 
in the open-loop zeros remaining closer to the imaginary axes and passes the ones moving 
the open-loop zeros farther left of the imaginary axis. Then, by using only the candidates 
passing this feasibility test, optimization of the actuator size and placement can be 
performed using the H∞ based design and µ analysis. The optimal mapping technique 
presented in this study is demonstrated on a simple finite element based model of a flexible 
structure consisting of a cantilevered beam with two pairs of spatially non-collocated 
distributed actuators and a displacement sensor. 

 
 



INTRODUCTION 
 
 
     Sensor and actuator placement is one of the most critical aspects in controller design. 
Researchers have published various efforts in the development of a systematic approach for 
the determination of the optimal sensor and actuator placement in the control of flexible 
structures (Chen et al 1975, Maghami et al. 1993). Maghami et al. (1993), presented a novel 
approach for the optimal placement of sensors and actuators in the active vibration control 
of flexible space structures. In their work, the positions of the collocated sensors and 
actuators having negligible mass and stiffness on the flexible truss type structure are 
optimized to move the open-loop zeros of the system farther to the left of the imaginary 
axis. However, the flexible structures are generally controlled by using noncollocated 
sensors and actuators to avoid the performance limitations which are inevitable in 
collocated case. Unfortunately, this generally yields to the formation of right half plane 
zeros. Inniss et al (2000), showed that the existence of the right half plane zeros may result 
in the ill-conditioning of the zeros of the flexible structure. Furthermore, the technique is 
based on the open-loop characteristics of the system and neither performance nor the 
robustness issues are addressed. 
 
     Other researchers have attempted to determine the optimal placement of the sensors and 
actuators in terms of a selected closed-loop performance index, which are usually control 
and deformation energies within the H∞ design framework (Arabyan et. al.1995 and 1996, 
Lind et al. 1997). These techniques require the search for the optimal configuration being 
conducted for all possible positions. Although these techniques include the closed-loop 
performance and robustness  issues in their analysis, the large computational cost associated 
with the H∞ optimal design makes this search procedure impractical for application to large 
flexible structures with a large number of actuators and sensors. Arabyan et al. (1999), 
presented a computationally efficient method to search and find the optimal configurations 
of the sensors and actuators. In their work, the large computational cost associated with the 
H∞ optimal design is reduced by considering the optimistic lower limit, the calculation of 
which is less expensive than the H∞ optimal design for all possible configurations. In this 
technique, H∞ optimal design is conducted only for the candidates having optimistic lower 
limit less than the target deformation suppression. The optimistic lower limit is obtained by 
relaxing the internal stability requirement in H∞ optimal design which may influence the 
robustness issues for the candidates. Furthermore, since the optimistic lower limit and 
standard H∞ optimal design approaches ignore the structure of the prevalent uncertainty, the 
results obtained are known to yield conservative results (Zhou et al.1996, Nalbantoğlu 
1996). In certain cases, this conservatism may affect the optimal mapping of the sensor and 
actuators. 
 
 

PROPOSED METHODOLOGY 
 
 
     The analysis conducted for the determination of the optimal spatial configurations of the 
sensor and actuators for the flexible structures are either based on the open- or closed-loop 
behavior of the system. While the open-loop approach concentrates on the influence of the 



sensor actuator placement on the open-loop properties such as the transmission zeros that 
can directly be linked to the closed loop controller design, the closed-loop approaches deals 
with the placement of the controller design procedure inside the automated search 
algorithm. Since the open-loop approach does not require the computation of the closed 
loop properties, the approach reduces computational effort in the solution of the sensor 
actuator placement problems. However, this technique inherently excludes the performance 
requirements and robustness issues of the closed-loop systems in the analysis. The closed-
loop approach however, includes these issues in the design process and carries out the 
optimal mapping for each sensor and actuator on the flexible structure. Unfortunately, this 
approach may result in prohibitive computational requirements.  
 
     The idea proposed here is the determination of the optimal size, spatial configurations of 
the distributed actuators and sensors on a flexible structure by placing the H∞ design and µ 
analysis technique inside the optimization search algorithm. This process generally results 
in excessive computational requirements as design and analysis has to be conducted for all 
possible candidates in the design space. In order to reduce the computational efforts, an 
open-loop based feasibility test is proposed to identify the acceptable configurations on the 
design space. Then, the H∞ design and µ analysis are applied to the candidates passing the 
feasibility test only. In this work, the robustness issues are modeled as the constraints in the 
optimal design.  
 
The State-Space Representation and the feasibility test function 

 
     The aim in the system modeling is to obtain the mathematical description of the plant for 
the design of the control system. The system modeling technique includes the determination 
of the state space representation of the system. The model of the system can be found via 
finite element method or system identification. The dynamical model of the finite element 
based model for the flexible structure can be described by the second order form as, 
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where, by defining N as the number of nodes of the finite element model and p as the 
number of degrees of freedoms associated with each node, [M], [Do], and [K] are Np×Np 
mass, damping and stiffness matrices respectively. In this representation, the vector {q}Np×1 
represents the generalized vector of displacements, { q& } Np×1 symbolizes the generalized 

vector of velocities and {q&& } Np×1 defines the generalized vector of accelerations for each 

node. Defining k as the number of actuators [F]Np×j is the unit voltage generalized force 
transformation matrix from jth (j=1 to k) actuator applicable to each node, and {u} j×1 is the 
actuation voltage vector associated with the jth actuator. Similarly, the output of the system 
for the ith sensor (i=1 to r) can be given as, 
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here, [Cq] and [Cv] give the displacement and velocity output matrices respectively. The 
displacement and velocity output matrices represent the nodes where the response is 
measured. The equation of motion given in (1) should be cast into the state space form that 



is the one generally used in the controller design of a linear time invariant systems. The 
standard form of the state space representation is given as, 
{ } [ ]{ } [ ]{ } { } [ ]{ }x Cy,u BxAx                            =+=&       (3) 
 
In this realization, [A] describes the system matrix, and [B] gives the input matrix, and [C] 
defines the output matrix. In this formulation, {u} symbolizes the vector of inputs to the 
system. The applications of the standard modal analysis techniques allow the determination 
of the state space representation in modal coordinates by considering new 
variable { }qqx &= T as (Çalışkan, 2002), 
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where, Λ is an mpxmp diagonal matrix formed by the eigenvalues obtained from the 
solution of the generalized eigenvalue problem described by equation(1), and Ψ gives 
npxmp modal matrix formed by the eigenvectors obtained from the same equation. In this 
realization, [I] is mp×mp identity matrix, and [Dm] symbolizes a mp×mp diagonal modal 
damping matrix. Besides, qm symbolizes the generalized modal displacement as, 
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     The finite element based state-space representation given in equations (4) and (5) 
provides necessary and sufficient information for the feasibility test and design of the 
controllers that aim to suppress the vibrations due to the modes of the flexible structures.  
 
      This work considers the application of a feasibility function so as to reduce numerical 
computations involved in closed-loop based optimization process. Hence an appropriate 
open-loop based feasibility test function should link the open and closed-loop properties of 
the systems. 
 
      The transmission zeros of a linear time invariant systems define the asymptotic location 
of the closed-loop poles under high actuator gains. It has been shown that as the 
transmission zeros of the system moves far enough to the left-half plane the possibility of 
acquiring fast regulation increases (Maghami et al.,1993). Hence, a feasible candidate for 
the spatial variations of the actuator and sensor locations can be selected among the ones 
moving the transmission zeros of the system farther in the left hand plane. For non-
minimum phase systems, these values can be selected by using the following open-loop 
objective test function. 
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where zi defines the open-loop transmission zeros of the system for the kth configuration of 
the sensor and actuator locations. The transmission zeros of the system model given can be 



obtained from the solution of the generalized eigenvalue problem described by equation (8) 
(Maghami et al.,1993, Inniss et al. 2000).  
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H∞ Optimal Control 
 
     The study utilizes H∞ optimal control design algorithm and µ analysis techniques to 
achieve the closed-loop performance objectives. The effectiveness of these techniques is 
shown in the literature [7-10]. The standard closed loop architecture of the H∞ controller is 
shown in Fig. 1. In this figure, {w}, {v}, {u}, {e}, {z} and {y} are vector valued signals. 
Here, {w} and {v} are the exogenous inputs, typically consisting of command signals, 
disturbances, and sensor noises. {u} is the control signal and {z} describes the output to be 
controlled and {e} symbolizes the error signals; their components typically being tracking 
errors, filtered actuator signal and {y} is the measured output. P(s) represents a generalized 
nominal transfer function of the system. In this architecture, K(s) processes the outputs and 
feeds back to the system. The H∞ control problem consists of determining K(s) such that 
the H∞ norm of the transfer function from {w}, {v} to {z}, {e} is minimized and the closed 
loop system is stable [12,13]. Unlike other conventional controllers, the uncertainties 
present in the system can systematically be included in the modeling. In this technique, 
despite of the presence of the uncertainties ∆(s) as shown in Fig. 2, the controller minimizes 
the ratio of the signal energies {e} to {v} (Zhou et al.1996). 
 

  
Figure 1. The closed loop architecture of the 
H∞ controller 

Figure 2. The modeling of the 
uncertainties in H∞ controller 

 
     In H∞ control problem, the ∆ block is eliminated for the design purposes and the input-
output map from [{w} {v}]T to [{z} {e}] T  is expressed in lower linear fractional 
transformation form Fl (P, K) [12] as , 
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where, 21

1
221211l P)KPI(KPP)K,P(F −−+=  Pij represents the partitioned elements of [P] 

(according to the dimensions of the control, measurement, disturbance and error signals) as, 
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     The objective is to find a stabilizing controller K that minimizes the ∞-norm 
of

∞
)K,P(Fl . For an uncertainty block satisfying 1<∆

∞
, the closed loop system in 

Figure 2 has robust performance if 1)K,P(Fl ≤
∞

 is achieved [8,12]. This result, however, 

is conservative because it assumes that the delta block is a full block. The uncertainties in a 
realistic problem are due to the components of a system, and the representation of such 
uncertainties results in a block diagonal ∆(s). A less conservative robustness test for the 
closed loop system is given by examining the structured singular values (µ) of M = Fl (P, 
K). For a given system M and an uncertainty structure, the structured singular value µ is 
defined (Zhou et al. 1996) as, 
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where ∆′ is the set of block diagonal matrices. In this analysis, if no ∆∈∆′ makes (I-M∆) 
singular then µ∆(M)=0. It has been shown that for an appropriately control design 
formulation the µ values less than one guaranties the robustness properties of the controller 
in the presence of the modeling uncertainties  (Nalbantoğlu et al. 1996). 
 
In this work, the closed loop objective for the determination of the optimal configuration of 
the actuators is considered as the maximization of the attenuation ratio across the frequency 
range of interest and the robustness issues specified by the µ values forms the constraints. 
Symbolizing the open and closed-loop systems by So and Sc respectively, the attenuation 
ratio corresponding to kth sensor and actuator configuration is described by, 
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Here µp and µs defines the performance and stability µ values respectively 
 
Illustrative Example 
 
     The effectiveness of the technique presented is demonstrated on a finite element based 
simple model of a flexible structure consisting of a thin cantilevered beam with two pairs of 
spatially non-collocated distributed actuators and a displacement sensor. The study uses 
ANSYS® (v6.1) to model the flexible structure. 
 
     It has been shown that the sensor and actuator type and placement has a direct influence 
on the poles and zeros of the linear time invariant systems as the actuators have non 
negligible mass and stiffness. In these cases, the open-loop frequencies and associated 
mode shapes changes for each candidate that requires the modification of the system model. 
This effect is more prominent on the thin flexible structures consisting of piezoelectric 
actuators. In these structures, although the increase in the size of the actuator makes the 
flexible structures stiffer, it also increases the energy transmitted to the structure thereby 
giving a rise to the energy transmitted to the structure. That consequently increases the 
response of the structure. Furthermore, as the patches move away from the regions where 
higher strain values developed, the response decreases (Çalışkan, 2002). Fig. 3 illustrates 



the finite element model and the initial size and configuration of the piezoelectric patches 
on the flexible structure. By using the parametric modeling feature of the model that 
consequently allows the modeling for different size and placement of the piezoelectric 
actuators and the finite element based system modeling technique presented, the open-loop 
characteristics of the system are obtained for each candidate. During the theoretical 
calculations modal damping ratio is taken to be 0.03 and to secure the validity of the linear 
piezoelectricity and elasticity theories considered, the upper limit for the actuator size is 
taken to be 150mm for both of the actuators. Furthermore, massless displacement sensor 
placed at the mid-tip location of the flexible structure is assumed to measure vibration 
signals. 
 

 
Figure 3. The finite element model and the initial size and configuration of the piezoelectric 
patches of the flexible structure ( a. Top view, b. Side view) 
 
     In this study, 104 candidates involving different spatial configuration and size of the 
actuators for the determination of the optimal placement and size are considered to 
determine the optimal size and configuration of the piezoelectric actuators. In order to 
determine the number of candidate passing the test, first the test function given in equation 
(9) is evaluated for each candidate and the absolute value of the test function is sorted in 
descending order. Then, the results obtained are plotted against the index number which 
effectively represents the number of candidates involved. The results are shown in Fig. 4. It 
can be seen from the figure that the smallest number that can capture the maximum values 
of the test function should be in the vicinity of the first 75 candidates where the gradient of 
the test function is zero. The selection of smaller number influences the effectiveness of the 
test. 

 
Figure 4. The feasibility test results 
 
     The H∞ controller synthesis and µ-analysis techniques described are applied to the 
flexible structure with the actuator size and placement combination passing the feasibility 
test by using µ-Analysis and Synthesis toolbox of the commercial program Matlab(v.6.0, 



2001). During the H∞ controller design for the flexible structure which is modeled as a 
single input single output system, the performance objective is selected to minimize the 
maximum frequency response of the first mode of the flexible structure at the sensor 
location. Fig. 5. shows the formulation of the closed loop control in H∞ framework. In Fig. 
5 , SYSflex defines the nominal flexible structure model, δ is a complex number such that 

1〈δ  and, with ∆ which is the multiplication of Wadd by δ defines the system model of the 

flexible structure including the uncertainties. In the modeling Wadd defines the amplitude of 
the weight of additive uncertainty weight included into the system model. Wper represents a 
performance weight on the displacement sensor to achieve the performance objective. 
These weights are adjusted to achieve attenuation in the peak frequency response of the 
closed loop systems involving different actuator configurations. 

 
     In this study, to limit the actuator command signal in the control design process to 250 
volts Wact in Fig. 5 is chosen as 1/250. The weights on the disturbance input, Wdist is taken 
to be 1 indicating that the input disturbance is expected to be on the same order of 
magnitude as the controller signals. The displacement signal is considered to have a signal 
to noise ratio of 100. Therefore, Wnoise in Fig. 5. is taken as a diagonal matrix with 0.01 as 
the diagonal elements. The absorption of the weights into the system model results in the 
standard closed loop formulation of the H∞ controller shown in Fig. 2 
 
     The purpose in the controller design is to minimize displacement signal in the low 
frequency range, while not exciting the unmodeled high frequency modes (Zhou et al.1996, 
Nalbantoğlu 1996). Fig. 6 shows the magnitude plot of the weightings together with the 
open-loop transfer function of the initial configuration. It can be seen from the figure that, 
as the frequency increases Wadd increases indicating a better system model at low 
frequencies. The performance weight is selected by considering the results of the feasibility 
test. The comparison of the Wper and the frequency response of the flexible structure with 
the initial actuator position and size The initial configuration (x1=3, x2=200,s1=50, s2=50, in 
mm) are also shown in Fig. 6. The application of this weight yields the minimization of the 
displacement at low frequencies while making minimal changes at high frequencies. 
 

 
 

Figure 5. The control problem formulation Figure 6. The comparison of the open-loop 
Transfer function, Wadd and Wper 

 
     The utilization of these weights together with the system models obtained for the 
candidates passing the feasibility test results in the standard H∞ control design formulation 



shown in Fig. 1. In this work, the robustness issues are addressed through the application of 
µ analysis for each feasible candidate. In order to confirm the validity of the proposed 
technique, H∞ control design and µ analysis conducted for all candidates and the results are 
plotted against the candidate number that includes information for each design variable in 
Fig. 7. It appears from Fig. 8 that the feasibility test effectively captures the acceptable 
candidates which have the largest attenuation ratios by using 75 candidates. This allows the 
application of formal optimization techniques to 75 acceptable configurations instead of 
104. The µ analysis is also conducted for the candidates passing the test and the results are 
plotted in Fig. 9. The existence of the µ values less than one indicates that the optimal 
controllers have robust performance in the presence of the modeling uncertainties.  
 
     Indicating the positions of the first actuators by x1 and the second by x2 and the length of 
the first and the second actuators by s1, s2 respectively, Fig. 10 gives the comparison of the 
open and closed-loop frequency response functions corresponding to different actuator size 
and placement values. These candidates are the ones corresponding to the initial 
configuration and maximum attenuation ratios. It can be seen from the figure that 
significant improvements in the attenuation levels can be obtained by considering different 
actuator size and configurations for the model considered. The attenuation ratios achieved 
at the first mode of vibration for the initial configuration and the maximum closed loop 
objective functions values are 3.75, and 13.05 respectively. 
 

 
Figure 8. The comparison of the open-loop and closed-loop objective functions  
(o: candidates passing the feasibility test,*: closed-loop objective)  
 

 
Figure 9. The µ analysis results for the candidates passing the feasibility test (x: µp, +: µs) 

 
Figure 10. The comparison of the open and closed-loop responses (a: initial configuration, 
b: maximum attenuation ratio; x1=9, x2=250 s1=150, s2=50, in mm) 



CONCLUSIONS AND FUTURE WORK 
 
     A computationally feasible approach for the actuator size and placement in the control 
of flexible structures has been demonstrated. The computations required for the H∞ control 
design algorithm and µ analysis techniques have been reduced by computationally 
inexpensive open-loop based feasibility test. Since the approach effectively determines the 
acceptable configurations in the design space and allows appropriate specifications of the 
weightings in H∞ control design and µ analysis techniques, the approach is feasible mainly 
for the problems involving high order models having large number of actuators and sensors. 
The technique presented is expected to improve the number of computations involved in the 
optimal mapping with exhaustive search or genetic algorithms. Although the technique 
demonstrated on the actuator size and placement problem on the simple beam, the 
technique may be extended to more complex actuator-sensor structural systems. 

 
ACKNOWLEGMENTS 

 
     Author1 is supported by The Scientific and Technical Research Council of Turkey 
within the scope of NATO science fellowship programme, and also the NSERC Strategic 
Grant no.  STPGP 246515-01. The support given is gratefully acknowledged. 
 

REFERENCES 
 

1 Maghami P. G.and Joshi S. M., “Sensor/Actuator Placement for Flexible 
Structures”,IEEE Transactions in Aerospace and Electronic Systems vol.29,no.2 
April 1993 

2 Chen W. H.  and Seinfeld J. H., “Optimal Locations for Process Measurements”, 
International Journal of Control,vol. 21, no. 6, 1975,1003-1014 

3 Inniss C. and Williams T., “Sensitivity of Zeros of Flexible Structures to Sensor and 
Actuator Location”, IEEE Transactions on Automatic Control, vol.45,no.1 Jan 2000 

4 Lind R., Balas G. and V. Nalbantoglu. “Computing Optimal Vibration Sensor 
configurations, Nasa Technical Briefs December 1997;89 

5 Arabyan A. and Chemishkian S., “SVD Based Control of a Beam Figure”, 
Proceedings of American Control Conference, Seattle Washington June 1995 

6 Arabyan A. and S. Chemishkian, “Intelligent Algorithms for H∞-Optimal Placement 
of Actuators and Sensors in Structural Control”, Proceedings of American Control 
Conference San Diego,California June 1999 

7 Nalbantoğlu V., Balas G. and Thompson P., “The role of performance criteria 
selection in the control of flexible structures”, AIAA Guidance and Navigation and 
Control Conference, San Diego, CA, pages 1-9,1996.  

8 Zhou K., Doyle J.C. and Glove K. “Robust and Optimal Control”, Prentice Hall, 
New Jersey,1996 

9 Nalbantoğlu V., Ph.D. Thesis, University of Minnesota, 1998, “Robust Control and 
System Identification for flexible structures” 

10 T. Caliskan, Ph.D. Thesis, Middle East Technical University, 2002, “Piezoelectric 
Ceramics and Their Applications in Smart Aerospace Structures”  

 


