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Abstract-In this study, sliding mode and H<,. control
techniques are applied to a flexible beam in order to suppress
some of the vibration modes. The beam is a clamped-free
flexible structure having piezoelectric (PZT) patches as
actuators and a laser displacement sensor for measuring the tip
point deflection. The beam is modeled in two different ways for
each control algorithm. To implement sliding mode control
(SMC), Euler-Bernoulli beam model is used and a finite
dimensional LTI model is formed by using assumed mode
method. As the SMC requires state measurement, an observer
is designed to estimate the states from the measured tip
deflection. In order to implement H<,. control algorithm, the
model of the flexible beam, which is an approximate transfer
function, is constructed by using system identification
technique. The experimental results of designed SMC and H,o
control algorithms are presented.

I. INTRODUCTION

V IBRATION control of flexible structures is of great
interest as light structures in all engineering

applications are getting much more important. Various
control strategies have been suggested and applied to
different flexible systems in order to suppress vibration of
flexible structures. Some of these studies are SMC [1, 2, 3],
LQG control [4], QFT Control [5], and Hoo control [6, 7, 8].
In these studies, infinite dimensional flexible structures are,
in generally, modeled as finite dimensional linear systems
by taking some of the vibration modes into account by
means of the assumed mode method and Finite Element
Model [1, 4, 5, 8, 9, 10].
SMC is a particular type of the so-called Variable

Structure Control (VSC) that changes the control
direction(s) to drive the system to a specified manifold in the
state space and then keep the system within a neighborhood
of this manifold. Hence, SMC design for a system consists
of two stages; design of the manifold such that the so-called
reduced-order system has stable dynamics and the design of
high frequency discontinuous control so that the system
trajectories are directed to the manifold for all initial
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conditions [ 11, 12]. The main feature of SMC is its
insensitivity to some class of uncertainties which makes it
attractive in the control applications for uncertain systems.
Another approach to control of uncertain systems is Hoo
control which uses an optimization problem with an operator
norm, called Hoo norm [13, 14].

In this study, SMC and Hoo control techniques are
designed and applied to a clamped-free flexible beam in
order to suppress the first two vibration modes of the
flexible structure. The partial differential equation (PDE) of
the beam obtained from Euler-Bernoulli beam equation is
transformed to finite dimensional ordinary differential
equations (ODEs) by means of the assumed mode method in
the SMC design. As the SMC uses states of the system,
which are unachievable, these are obtained by means of
observer design. With the observer design, the output (tip
deflection) is used and the structure of SMC becomes very
similar to that of Ho. control, i.e., the output of the system is
measured and used in the creation of control law. On the
other hand, experimental system identification method based
on the work in [15] is used to obtain system model (transfer
function) and then Hoo control is applied to this model.

The organization of the paper is as follows; in Section 2,
the system modeling is described for each control
algorithms. Section 3 gives the controller design. In section
4, experimental setup and results are given. Finally,
conclusions are given in Section 5.

II. SYSTEM MODELING

The control algorithms studied here require different
system modeling in order to implement the designed control
laws. For instance, SMC law is based on finite dimensional
state space model of the system, whereas Hoo control law
needs the transfer function. Therefore, in this study, two
models of the flexible beam are formed and used for each
control algorithms. For the SMC law, Euler-Bernoulli beam
is used and PDE of the system is transformed into a finite
dimensional ODEs and the state space form of the finite
dimensional system is used. For the Hoo control law, by using
experimental results, an approximate transfer function is
obtained.

A. Euler-Bernoulli Beam Model
The model of clamped-free flexible beam studied here is

given in Fig. 1.
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For the first two modes of the beam, the quantities are
calculated as 2A = 3.7955 and A2 = 9.5020. The natural
frequencies can be calculated from,

A=2

Fig. 1, Flexible beam model

Two piezoelectric patches are bonded to the flexible beam
as actuators near the fixed end and laser displacement sensor
is used to measure the tip point displacement. By using the
Euler-Bernoulli beam equation, the infinite dimensional
mathematical expression of the beam can be written as
follows;

' LEJt)1+ yt) C °(Xt) (1)

where y(x,t) is the deflection along the x-axis, E is the
Young's modulus, I is the moment of inertia, A is the cross-
sectional area, and p is the density of the uniform beam.
Va(x, t) is the applied control voltage to piezoelectric
actuators. Since piezoelectric actuators are uniform along
their lengths, the control voltage Va(x,t) can be replaced by
Va(t). The PDE given by (1) can be solved by using the so-
called assumed mode approach which yields finite
dimensional ordinary differential equation set. In that case,
we assume;

and
00

y(x, t) =lqi (t)oi (x)
i=l

qi (t)+2jiwi 4i ()+Wi qi (t) =-3 [oi (11))-Xi (12)] VI (t)
pAL

for i= 1,2, ...n (2)

In (2), qi(t), 04(x) X'i(x) are the ith modal coordinate, mode
shape function, and modal slope respectively. On the other
hand, wi and 5i are the natural frequency and the damping
ratio of the ith mode respectively. In this study, first two
modes of the beam are controlled (i= 1,2). The mode shape
function for clamped-free beam is given by

Ai (x) = L(coshgix) - cos(Aix) - ki (sinh(2x) - sin(%1x)) (3)

where k cosh(Q2P + cos(2LP)
sinh(2LL) + sin(2LL)

The quantities Ai are the real roots of the following equation

cos(AiL)cosh(AiL) = -1 (4)

where, I = bt1/12, A = btb . For the beam studied here,

the natural frequencies are found to be wl=6.5720 and
w2=41.1890 Hz. Damping ratios of the first two modes of
the flexible beam are obtained as 41=0.07 and 42=0.02 [1].
The constant Ca in (2) can be calculated from

Ca =Epd3lb(tb+tp) (6)

where Ep is the Young's modulus, tip is the thickness, and d3l
is the electric charge constant of the piezoelectric patches. b
and tb are the width and thickness of the beam respectively.
The beam model for the first two modes can be written in
the state space form as follows;

0
2

k~(t) =

4

0
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241wl
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0
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0 0 Ca- - (2)

[x(t) AL3 ( u(t)
-V2 _24 2w2j Y2' Y'2'2'

(7)

For the SMC implementation state space modeling of the
beam given in (7) will be used.

B. System Identification ofThe Beam
In order to implement Ho. control law, transfer function of

the system is necessary. In this study, the transfer function
of the system is approximated by using experimental system
identification technique which is based on the works [6] and
[15]. Experimental identification of the beam includes two
approaches; white-box and black-box modeling. White-box
modeling is theoretical and black-box modeling is the
experimental part of the system identification. The method
having two of them is called gray-box modeling [15].
Parametric and nonparametric techniques can be used to
construct system model in gray-box modeling. In parametric
system identification, system model is considered with
parameter vector to be determined. The important thing in
the determination of parameters of the system is the
adjustment of frequency responses of the system with the
experimental frequency responses.

In this study, nonparametric and parametric system
identification methods are used. In the nonparametric part, a
sinusoidal signal with variable frequency is applied to the
beam and response of the beam is obtained. Windowing and
Welch average techniques are used to obtain smooth
response of the beam since smooth response is important for
parametric identification. After nonparametric identification,
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the frequency response model is obtained by using least
square curve fitting method. The system model obtained by
nonparametric method can be expressed as follows;

g(z)

p

znz
j=l

p-1

ZP + Zdjz'
j=l

where p shows the order of the equation. The parameters to
be found are the coefficients of the numerator and
denominator of the transfer function. The order of the
equation (p) is selected by doing the experimental part of the
system identification (black-box system modeling). The
system is excited with a sinusoidal chirp signal of frequency
up to selected mode frequencies, and then the response of
the system is stored to be used in the white-box system
modeling. The order of the equation is determined by curve

fitting (order of the curve) so that estimated transfer function
response satisfies the experimental part. After some

mathematical operations [6], (8) can be considered as a

"least square method" problem of the following form;

Ax^ =b+r. (9)

where,

By using the transfer function of the beam obtained
experimentally, the frequency response of the system is
plotted in Fig.2. As it can be seen from Fig.2, the estimated
transfer function obtained by (10) can represent the system
well enough since the error between the estimated and fitted
(experimental) transfer functions is quite small.
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Fig. 2, Frequency response of the flexible beam.
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L=

Ig(z1 )z1~

b= g(Z2)Z2p

g(zm )Zm

where m is the number of frequency point, r is the minimum
norm vector which satisfies (9).
After some mathematical and experimental operations, the

transfer function of the flexible beam is approximated as

follows [6];

G(s) _ -0.00024s8 -0.01185s7 -128.9s6 + 3552s
s8 + 41.43s7 + 5.648 x 105s6 +1.637 x 107s5

- 2.294 x 107 S4 - 9.158 x 108 S3 + 3.117 x10 s2+ 3552s5 (10)
+3.492x10 1s4 +6.383x10 s3 +1.262x10 4s2

III. CONTROLLER DESIGN

In this section, two control algorithms for the active
vibration suppression of the flexible beam are introduced.

A. Sliding Mode Controller

SMC design for flexible beam comprises two stages: the
design of a manifold so that sliding motion satisfies a stable
dynamics and synthesis of a control law such that the
trajectories of the closed loop motion are directed towards
the surface. Since the states of the flexible beam system,
which are necessary to construct the controller, can not be
measured directly, an observer is designed which estimates
the system states by measuring the tip point displacement of
the beam.

Controller Design: The flexible beam model given by (7)
is an LTI system and it can be represented by

x(t) = Ax(t) + Bu(t) 11

y(t) = Cx(t)

where the triple (A, B, C) is controllable and observable. The
standard linear sliding surface design procedure can be
applied to (10), which starts with the following sliding
surface equation [11, 12];

U(x,t) = Sx(t)
+6.433x10Is+7.224x104
+1.134x10 s+.lx lO7

(12)

The controller which directs the system states to the
surface and keeps it on the surface has two parts; equivalent

1242

Fitted Transfer Function
Estimated Transfer Function

1



control and high frequency discontinuous control. The
equivalent control is given by Ueq (t) (SB) SA x(t) and

it is continuous one which can be implemented quite
reasonably with high performance microprocessors. The
high frequency control input, on the other hand, is given by

Un (t) = -K sign(u(x)) (13)

where K is a positive constant. Note that un (t) is a high
frequency discontinuous control and PZT patches in the
system can produce high frequency control signals. Now the
total control input becomes

u(t) = Ueq (t) +Un (t) (14)

Observer Design: The modal coordinates and modal
velocities, which are the states of the flexible beam model,
can not be measured directly. Therefore we design an
observer in order to estimate the system states. The observer
design is based on [11, 12]. The estimates have,

x(t) = Ax(t) + Bu(t) + L(y - Cx(t))

In the figure, system represents the model of the beam
obtained from system identification. The uncertainties are
represented as Wadd at the block diagram. Wper is the
expected performance specifications of the system, Wact is
saturation of the actuators, Wd is for external disturbances
and Wn is for noises at the measuring device in the system.
Details of designing H01. controller for this flexible beam can
be found in [6].

IV. EXPERIMENTAL SETUP AND RESULTS

The beam used in this study is shown in Fig.4. In the
experimental setup 507x51x2 mm Aluminum beam and
20x25x0.61 mm dimensional 8 pieces BM500 type
piezoelectric (PZT) patches were used. Parameters of the
flexible beam and PZT patches are given in Table 1.

(15)

where x E R' is the n-dimensional estimated states which
gives the error between real and estimated states as
e = x - x. The error dynamics of the observed system
becomes e(t) =(A -LC)e(t) which implies that (i-LC
must have negative eigenvalues to obtain a stable observer.
The observer gain matrix, L, should be chosen carefully so
that the estimated states should converge the system states as
quick as possible. Improper choice of observer gain matrix
may lead to system instability.

Fig.4, The flexible beam system

Table 1. Parameters of flexible beam

B. HIL Controller Design

In this section, H0. controller is designed to increase the
damping ratio of the flexible beam in the working frequency
interval and stability of the system under disturbances.

Beam length, L
Beam width, b
Beam thickness, tb
Beam density, p
Beam Young's modulus, E
PZT position, 1i
PZT position, 12
Charge constant, d3l
PZT Young's modulus, Ep
PZT width, w
PZT thickness, t,

0.507 m
0.051 m
0.002 m
2480 kg/m3
70xlO9N/m2
0.026 m
0.076 m
-200xlo12m/V
60xlO9N/m2
0.051 m
6.1x0O-4 m

Fig.3, Block diagram of the Hoo Controller
Schematic diagram of the H01. controller is given in Fig.3.

In order to implement the controllers designed in section
3, Sensortech SS1O type four-channel programmable
controller and data acquisition system was used. This
programmable controller system is controlled by a personal
computer which runs with Linux operating system. The
control signal was send to Sensortech SAIO high voltage
power amplifier in order to apply to PZT patches. The
controller system can send signal between -1OV and +1OV,
then this signal was amplified 15 times by high voltage
power amplifier. This means that control signal is bounded
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at +150V and -150V. Tip point displacement of the beam
was measured by Keyence laser displacement sensor which
has the maximum sampling frequency of 1024 pts. The
measured signal was fed back to controller system. The
experimental setup of the flexible beam system is given in
Fig.5.

Fig.5, Experimental setup of the flexible beam system

The open loop time response of the beam for 0.04 m
initial tip point displacement and zero velocity is given in
Fig. 6.
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Time response of the beam for SMC and applied control
input to PZT patches are given in Fig.7 and Fig.8
respectively. In the experimental studies, the positive
constant K, in (13) is selected to be 0.5. The output is
produced by D/A National Instruments PCI-6713 card and
the maximum sampling rate for producing the output signal
is 2048 sample/s. The SMC algorithm suppresses the
vibration of the beam in less then 1 sec. As expected,
because of the discontinuous part of SMC (and because of
vibration), the control signal changes its direction and a high
frequency control signal is required. Because of bound in
the control signal, SMC control signal is between -150 and
+150 V.
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Fig.8, Applied control voltage to PZT patches for SMC.
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Fig.7, Closed loop response of the beam for SMC.
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Fig.9, Closed loop response of the beam for Hoo control.

Time response of the beam for Hoo control and applied
control input to PZT patches are given in Fig.9 and Fig.10
respectively. The designed H0. control algorithm also
suppresses the vibration in a very short time and the applied
voltage is again discontinuous. However, Hoo control
algorithm presents a more smooth control signal. On the
other hand, because of high order transfer function
modeling, applied control voltage takes longer time
compared to SMC.
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V. CONCLUSIONS

In this work, two different control algorithms, SMC and
Hoo control were designed and implemented in order to
suppress some of the vibration modes of a flexible beam.
The SMC design is based on finite dimensional model of the
Euler-Bernoulli beam and the states of the model are
obtained by using an observer. The observer uses the output
information, which is the tip deflection of the beam, and
generates the system states. By this configuration, the SMC
structure looks like the structure of the Ho. controller, i.e.,
the output information of the system is utilized. On the other
hand, Hoo controller was designed by constructing system
model from system identification. By performing
experimental identification method, an estimated transfer
function which represents the system is formed. Two
different control strategies were applied to the same system
and the experimental results showed the success of the
control approaches.
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