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  ABSTRACT 
 
This study presents a technique for the state space representation of the aeroelastic models of smart 
structures. It was  based on a rational approximation of the unsteady aerodynamic loads in the Laplace 
domain, which yielded state-space matrix equations of motion with constant coefficients. In this study, an 
aluminum plate-like structure with twenty-four surface bonded piezoelectric patches was considered. The 
unsteady aerodynamic loads acting on the structure were calculated for a range of reduced frequencies and 
a Mach number by using a linear two-dimensional Doublet-Lattice Method available in MSC/NASTRAN®. 
Those discrete air loads were approximated as rational functions of the Laplace variable by using one of the 
aerodynamic approximation schemes, Roger’s approximation, with least-squares method. Then the state 
space representation of the aeroelastic model was constructed by using the approximated air loads together 
with structural matrices. In order to verify the state space approach, the flutter characteristics of the plate-like 
structure were investigated and the results were compared to those obtained by MSC/NASTRAN® analysis. 
 
 
 

INTRODUCTION 
 

Aeroservoelasticity theory represents the combination of aerodynamics, control systems and aeroelasticity 
disciplines regarding different aspects of aircraft dynamics. The interactions between the flexible structure, 
the aerodynamic forces and the control laws acting on the structure can cause instabilities at any time inside 
the flight envelope, and these aeroservoelastic interactions on aircraft are very complex problems to solve. 

One main aspect of aroservoelasticity is the construction of aeroelastic model in state-space form which has 
apparent advantages for the aeroelastic analysis, for instance the V-g method for flutter analysis may be 
replaced by a simple root-locus [5,8] or for feedback control utilization, for instance in the use of modern 
control techniques [1,2]. 

Recent development of smart structures, the structures which can sense the external disturbance and 
respond to that with active control in real time to maintain the mission requirements, has encouraged many 
researchers to work in aeroelastic control. Raja et al. [3] developed an active flutter velocity enhancement 
scheme employing linear quadratic Gaussian (LQG) based MIMO controller with piezoelectric actuators and 
sensors. An active smart material control system, using distributed piezoelectric actuators, was presented for 
buffet alleviation by Sheta et al. [4]. 

The main difficulty in modeling an aeroelastic system in state-space form for control design lies in the 
representation of the unsteady aerodynamic loads. The air loads in the frequency domain have to be 
approximated by rational functions of Laplace variable s (namely fraction of polynomials of s). There are 
several methods in the literature in order to  approximate the unsteady generalized forces by rational 
functions from frequency domain to the Laplace domain. Karpel et al. [10] presented minimum-state 
formulation for rational function approximations of aerodynamic forces to an active flexible wing wind-tunnel 
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model. Matrix Pade approximant technique was introduced by Vepa [14] and modified by  Edwards [12]. 
Also, Roger [15] introduced a formulation in the Laplace domain for the aerodynamic forces by using 
common denominator roots. In this paper, Roger’s formulation with the least-squares method [13] was used 
for aerodynamic approximation. By using these approximated air loads the state space representation of the 
aeroelastic model was constructed for the smart structure. Also, a root-locus analysis was performed in order 
to obtain the flutter characteristics of the structure by using the state-space model.  

 
 

THEORY 
 
Generalized equations of motion  
 
The basic assumption of the modal approach to structural dynamics is that the structural displacements can 
be adequately expressed as a linear combination of some baseline modes and modal displacement vectors 
[9]: 
 

{ } [ ]{ }ζφ=x                                    (1)
  

where { }x  is the structural displacements vector, { }ζ  is the modal displacements vector and [ ]φ  is the 
baseline modes. 
 
By assuming no damping, one can obtain the following generalized equations of motion: 
 

[ ] [ ]{ } { })()()( tFtKtM SSs =+






 ⋅⋅

ζζ                                          (2) 

 
where [ ]SM  is the modal mass matrix calculated as [ ] [ ] [ ][ ]φφ  MM T

S =  by using  the discrete mass matrix 

[ ]M , [ ]SK  is the modal stiffness matrix and determined as [ ] [ ]SiS MK 2ω=  where iω  is the natural frequency 

and { }SF  is the generalized forces calculated by { } [ ] { })(tFF T
S φ=  where { })(tF  is the force vector in discrete 

coordinates.  
 
Most of the commercial  unsteady aerodynamic routines assume that the structure undergoes harmonic 
oscillations. Thus, Equation 2  can be written in the frequency domain as [9]: 
 

[ ] [ ] { } { })()()( ωωζω iFiKM SSS =+− 2                                     (3) 
 
where ω  is the frequency of the oscillations. 
  
The generalized unsteady aerodynamic forces acting on the structural modes of a linear aeroelastic system 
is also expressed in the frequency domain as [16]: 
 

{ } [ ]{ })()()( ωζω iikQqiFS =                                   (4) 
 

where q is the dynamic pressure given by 2

2

1
Vq ρ= , ρ  is the air density and V is the air velocity . k is 

called the reduced frequency and  is known to be Vbk 2/ω= , where b is a reference chord length. The 
generalized aerodynamic influence coefficient matrix [ ])(ikQ  is a complex function of reduced frequency and 
flight conditions . 
 
By substituting Equation 4 into Equation 3  and writing in the Laplace domain results in the generalized 
equations of motion for aeroelastic motion: 
 

[ ] [ ] [ ] { } 02 =−+ )())(( ssQqKMs SS ζ                                   (5) 
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Aerodynamic load approximation 
 
Aerodynamic influence coefficient matrices [ ])(ikQ  can be calculated at several discrete reduced frequencies 
by MSC®/NASTRAN [7]. In order to obtain an aeroelastic system, with a finite-order state form matrix 
equation for linear stability analysis, the aerodynamic influence coefficients have to be approximated by 
rational functions of Laplace variable s [10]. 
 
The unsteady aerodynamic forces can be approximated by Roger’s approximation [15] as: 
 

  ∑
+

+++=
= −
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                                       (6) 

 
One can, like most of the applications ([10] and [13]), separate the real and imaginary parts of Q(k) by 
considering  only four denominator roots. This leads to  M=6 . Then it becomes that; 

 

2
4

2

6
2

2
3

2

5
2

2
2

2

4
2

2
1

2

3
2

2
20 ββββ +

+
+

+
+

+
+

+−=
k

Ak

k

Ak

k

Ak

k

Ak
kAAkQR )(          (Real part)                      

                   (7) 

2
4

2

64

2
3

2

53

2
2

2

42

2
1

2

31
1 β

β
β

β
β

β
β

β
+

+
+

+
+

+
+

+=
k

kA

k

kA

k

kA

k

kA
kAkQI )(    (Imaginary part) 

 
Q is calculated at discrete values of the reduced frequency k. At each value of the reduced frequency real 
and imaginary error functions are determined from Equation 7 as: 
 

[ ]{ }CBQE iRiRiR ,,, +=  

                   (8) 
[ ]{ }CBQE iIiIiI ,,, +=  

 
where 
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i refers to a particular reduced frequency ik  at which Q is calculated. Defining a complex error function [13]: 
 

iIiRi jEEE ,, +=                                                     (9) 

 
A least square fit can be passed through the N data points by setting  
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where '
iE  is the complex conjugate of iE . By solving Equation 10 for the coefficients of the fit, 

{ } [ ]TAAAC 610 ...= , one obtains the following: 
 

{ } [ ] [ ] [ ] [ ] [ ] [ ]∑ +
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Substituting Vbk 2/ω=  into Equation 6, one  obtains the approximated aerodynamic forces in the Laplace 
domain as: 
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Coefficients 610 AAA ,...,,  are determined from Equation 11. The values of β  are selected to be in the 
reduced frequency range of interest. 
 
 
State-space equations of motion 
 
Determination of an aeroelastic model in state-space form allows the use of control algorithms, and facilitates 
the root-locus analysis and  optimization methods. However in the present study, a state space approach is 
only used to perform an open-loop flutter analysis.   
 
Defining a state vector and an augmented state vector  as [11]: 
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and substituting approximated aerodynamic forces, Equation 12, into aeroelastic equation of motion, 
Equation 5, a state-space matrix equation of motion is formed: 
 
 
{ } [ ]{ }xAx =�  
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where  
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[ ] [ ] [ ]0
2

2

1
AVKK S ρ−=  

 
The state-space model is of the order of 6xn, where n is the number of modes. 
 
 
 

NUMERICAL RESULTS 
 
Smart Structure Model 
 
The physical model considered in this study is a smart aluminum plate-like structure called as a smart fin 
which is constructed by symmetrically attaching twenty-four PZT patches (25mm x 25mm x 0.5mm, 
Sensortech BM500 type) as actuators on a passive aluminum plate-like structure. In the analysis, the smart 
fin is considered as being in clamped-free configuration. Geometrical model of the smart fin is shown in 
Figure 1. Material properties of the structural components including the aluminum fin and piezoelectric 
patches are given in Table 1. 
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Figure 1. Smart fin (all dimensions in mm) 
 

 

Table 1. Properties of the smart fin 

Property 
Aluminum  
6061-T6 

PZT 
BM500 

Density [kg/m3] 2710 7650 

Thickness [mm] 0.737 0.5 

Young’s Modulus [GPa] 69.0 64.5 

Piezoelectric charge constant [m/V] - -1.75×  10-10 
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Open-loop Flutter Estimation 
 
In order to verify the  state space approach, an open-loop flutter analysis of the smart fin was performed, and 
then the results were compared to those obtained by MSC®/NASTRAN/Aeroelasticity I. 
 
MSC®/PATRAN was used to obtain the Finite Element Model of  the structure. Figure 2 shows the finite 
element model of the smart fin. QUAD4 shell elements were utilized for the modeling of the smart fin. 
PCOMP cards in MSC®/NASTRAN were used to specify the properties of the composite lay-up for the 
actuator and aluminum substrate.  
 
 

 
Figure 2. Finite element model of the smart fin 

 
 
The generalized unsteady aerodynamic loads in modal domain were calculated for a chosen range of 
reduced frequencies (k = 0.01, 0.03, 0.05, 0.1, 0.16, 0.2, 0.3, 0.35, 0.4, 0.6) by using a linear two 
dimensional aerodynamic theory, Doublet-Lattice Method in MSC®/NASTRAN, and the loads were extracted 
using Direct Matrix Abstraction Programme (DMAP) from MSC®/NASTRAN. The flight conditions are an air 
density of 1861.=ρ  kg/m3 and low subsonic velocity regime (Mach number M=0.2). In the analysis, the first 
four elastic modes were considered. These modes and natural frequencies are given in Table 2. The discrete 
air loads from MSC®/NASTRAN were approximated by Roger’s approximation and least-squares method 
using MATLAB® code [6]. Figure 3 and 4 show approximated air loads for 11Q  and 22Q  with the tabulated 
aerodynamic MSC®/NASTRAN data. The chosen values of the aerodynamic lag term coefficients used in 
Roger’s approximation are =1β 0.03, =2β 0.1, =3β 0.2, =4β 0.25 which are in the reduced frequency 
range of interest and provide a good curve fitting. 

 
 

Table 2. Natural frequencies of the smart fin in zero-flow condition 

Mode number Frequency (Hz) 

1 (First bending) 13.7 

2 (First torsion) 39.7 

3 (Second bending) 63.0 

4 (Second torsion) 128.1 
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Figure 3. Approximation of Q(1,1) by Roger’s approximation 
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Figure 4. Approximation of Q(2,2) by Roger’s approximation 

 

The approximated air loads estimated in modal domain are used along with structural matrices to build a 
state space model from Equation 13  to conduct an open loop flutter analysis. By solving Equation 13  for 
several flight velocities (in the range of 20 and 120 m/sec), the roots of the system are obtained. Figure 5 
shows the velocity root-locus plot of the smart fin model. The plot traces the roots of the system as the 
airspeed changes. The horizontal axis is the real part while the vertical axis is the imaginary part of the roots. 
The imaginary axis represents the point of neutral stability. Flutter is represented on the root locus plot by a 
pole crossing this axis into the right half plane. 
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The flutter analysis results of state space approach have been compared with 
MSC®/NASTRAN/Aeroelasticity analysis in Table 3. The open-loop flutter estimation by state space 
approach appears to be reasonable.  
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Figure 5. Root-locus of the state-space model of the smart fin as a function of the flight velocity 

 

 
Table 3. Comparison of open-loop flutter characteristics  

 
Flutter Velocity 
[m/sec] 

Flutter Frequency 
[Hz] 

MSC®/NASTRAN/Aeroelasticity I 109.74 29.94 

State Space Approach 110.09 29.91 

% Deviation from NASTRAN 0.32 0.10 

 
 
 
 

CONCLUSION 
 

In this paper a method for the state-space representation of the unsteady aerodynamic loads on a smart 
structure was presented. The aerodynamic loads acting on the structure at a set of reduced frequencies 
were obtained from a finite element program, MSC®/NASTRAN. The loads at these discrete points were 
approximated in the complex frequency domain as rational functions, then a state-space representation of 
the aeroelastic model was constructed for the smart structure. The state-space model  was used to predict 
the flutter characteristics of the structure. These results were compared with the results obtained from the 
MSC/NASTRAN/Aeroelasticity solutions and very good agreement was observed. In future studies this state-
space model will be used in representing the uncertainties and  designing robust controllers for the active 
flutter suppression of the smart structure. 
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