Computational and Experimental Aeroelasticity
Multidisciplinary Design and Optimization

Prabhat Hajela
Mechanical, Aerospace and Nuclear Engineering
Rensselaer Polytechnic Institute, Troy, New York USA

Sponsored by
RTA-NATO
METU, Ankara, Turkey
Outline of MDO Lectures

- The multidisciplinary design problem
 - components, challenges, and opportunities
- Review of numerical optimization methods
- Methods for sensitivity analysis
- Decomposition methods in design
- Applications of soft computing in multidisciplinary optimization
The MDAO Problem
MDAO Problem - General Characteristics

- Final system or product is generally an integration of several distinct subsystems - the desired objectives of the system are met by varying parameters within each subsystem.

- Collectively, for all subsystems, the number of design parameters and constraints can be quite large.

- Design decisions/parameter changes within a particular subsystem cannot be generally affected without a beneficial/adverse effect in another subsystem.

- Analysis techniques within a subsystem develop over time to be uniquely well suited to a particular discipline.
The MDAO Problem

- System analysis
 - analysis for design
 - analytical or numerical modeling
 - approximate analysis
- Design problem formulation
- Design optimization
 - strategies, methods
 - sensitivity
- Interpretation of results
- Data-handling
The Analysis Problem

- Complex-coupled analysis
 - computationally demanding
- Difficulty in computing sensitivities
- Lack of analytical or numerical models
 - manufacturing
 - supportability
 - cost
Rotorblade Design

- Design of rotorblade
 - structural design
 - aerodynamic planform
 - airfoil selection
 - control system gains
- Complex-coupled nonlinear analysis
 - computationally intense
 - incompletely defined
Typical Coupled Analysis

Aerodynamics

Induced Flow Model

Lift Model

Inflow angle of attack

Loads Interface

Structural Dynamics

Multibody Formulation

Convergence

No

Kinematic Interface

Next Time Step

Yes

blade configurations
Crashworthy Design of Rotorcraft Structures

- Topological design of grillage-type subfloor structures - enhanced crashworthiness
 - placement of energy absorbing components
 - optimal load-deflection characteristics of energy absorbing components
 - selection of geometry of energy absorbing components

CH-47 KRASH model
Process Modeling for Design

Fiber Layup Machine

> Panel Thickness
> Panel Geometry
> Panel Curvature
> Location of Cutouts

Goals

> Layup time minimization
> Material cost minimized
> Structural Integrity
> Maintainability
The Design Problem

- The problem formulation
- Design space is a mix of continuous, discrete, or integer variables - high dimensionality
- Design space may be nonconvex or disjointed
- Non-crisp design information
Design Problem Statement

- Objective can be a scalar or vector function
- Both maximization and minimization are admissible
- Constraints may be linear or nonlinear - equality and/or inequality
- Objective criterion may be treated as constraints
- Problem formulation is critical to the efficiency of the numerical search process

Minimize \(F(X) = \{f_1, f_2, \ldots, f_p\} \)

Subject to:
\[
\begin{align*}
g_j(X) & \leq 0 & j = 1, m \\
h_k(X) & = 0 & k = 1, l \\
x_i^L & \leq x_i & \leq x_i^U & i = 1, n
\end{align*}
\]
Challenge of Dimensionality

- High-Speed Civil Transport - Wing Structure (Ref. Sobieski’97)
 - Analysis: 2694 nodes, 16152 EDOF’s, 3634 quad elements
 - Optimization: 7918 design variables, 10 constraints per element, 60 different load cases, 2,200,000 design constraints
- Large dimensionality over-extends current capabilities of traditional search techniques
- Compromised ability to interpret progress of design optimization
- Storage and subsequent use of information
 - matrix of constraint derivatives (ndvxncon=17Gwords)
Mixed Variable Design Space
Rotor Blade Design

\[
\frac{(+/- \theta_1)/(+- \theta_2)}{t_1}
\]

\[
t_2 \quad \text{m}^t \quad t_3
\]

\[
c \quad t_1 \quad c_r \quad R \quad \tau_R \quad c_t
\]
Mixed Variable Space

<table>
<thead>
<tr>
<th>Design Variable</th>
<th>ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontal flange thickness</td>
<td>t_1^i</td>
<td>continuous</td>
</tr>
<tr>
<td>tuning mass</td>
<td>m^i</td>
<td>continuous</td>
</tr>
<tr>
<td>vertical web thickness</td>
<td>t_2^i, t_3^i</td>
<td>continuous</td>
</tr>
<tr>
<td>blade twist</td>
<td>θ_t</td>
<td>continuous</td>
</tr>
<tr>
<td>twist shape parameter</td>
<td>δ</td>
<td>continuous</td>
</tr>
<tr>
<td>taper inception point</td>
<td>τ_R</td>
<td>continuous</td>
</tr>
<tr>
<td>chord ratio</td>
<td>λ_c</td>
<td>continuous</td>
</tr>
<tr>
<td>rotational speed</td>
<td>Ω</td>
<td>integer</td>
</tr>
<tr>
<td>composite layup angle</td>
<td>θ_1, θ_2</td>
<td>discrete</td>
</tr>
</tbody>
</table>

where, i denotes the blade spanwise segment
Mixed Variable Design Space

- Mix of discrete, integer and continuous design variables
- Traditional optimization methods ill-equipped to handle this mixed-variable space
 - rounding strategies
 - branch-and-bound techniques
- Discontinuity in gradient information
Nonconvex Design Space
Disjoint Design Space
Non-Crisp Design Problem Statement

- Design requirements may vary over the design cycle
- Imprecise information related to process models
- Uncertainties in manufacturing processes and/or availability of materials
- Market forces
- Uncertainties in life-cycle requirements
Overview of Numerical Optimization
Design Optimization

• General statement of optimization problem

\[
\text{Minimize } F(X) \\
\text{Subject to } \\
g_j(X) \leq 0 \quad j = 1, m \quad \text{inequality constraint} \\
h_k(X) = 0 \quad k = 1, p \quad \text{equality constraint} \\
X_i^L \leq X_i \leq X_i^U \quad i = 1, n \quad \text{side constraint}
\]

• Example would be to minimize the weight of a wing structure so that stresses in all elements be below permissible levels and first natural frequency be equal to some stipulated value
Mathematical Optimization

- The objective and constraint functions may be linear, nonlinear, explicit, or implicit
- Objective function and all constraints linear - linear optimization problem or linear programming problem
- Both objective and constraint functions are nonlinear - nonlinear programming problem
- Some function minimization or maximization may involve no constraints - unconstrained optimization problem

- *Important issue to consider up front is that the principal computational cost in numerical optimization is due to the repetitive analysis that must be performed*
General Approach in Optimization

- Given a starting point X^0
- At the q-th iteration, update the design vector as follows

\[X^q = X^{q-1} + \alpha S^q \]

- S^q search direction vector and α is the step size
- Calculation of the search direction and step size differ in the different strategies for nonlinear programming based design optimization methods
 - step size calculation is a one-dimensional search
 - search direction calculation may require sensitivity information
Some Definitions

- Design variables - parameters that can be varied to improve the design
- Constraints - conditions that must be satisfied for the design to be acceptable (inequality - one sided, equality - precisely, side - bounds on the design variables)
- Objective function - function of design variables that must be minimized or maximized
- Design parameters - fixed parameters for which an optimal design is obtained
- Feasible design - all constraints satisfied
- Infeasible design - one or more constraint is violated
- Active constraint - design is on a constraint boundary
Example

Minimize \(F(X) = X_1 + X_2 \)

Subject to

\[g(X) = \frac{1}{X_1} + \frac{1}{X_2} - 2 \leq 0 \quad \text{inequality} \]

\(X_1 \geq 0.2 \quad X_2 \geq 0.2 \quad \text{side} \)
Necessary Conditions for Optimality
Kuhn-Tucker Conditions

- If \(X^* \) is feasible then the following conditions hold

\[
\lambda_j g_j(X^*) = 0
\]

\[
\nabla F(X^*) + \sum_{j=1}^m \lambda_j \nabla g_j(X^*) + \sum_{k=m+1}^{m+p} \lambda_k \nabla h_{k-m}(X^*) = 0
\]

\[
\lambda_j \geq 0, \quad j = 1, m
\]

\(\lambda_k \) unrestricted in sign for equality constraints

- Vector sum of the objective gradients and scaled gradients of the active constraints must add to zero at the optimum
Necessary Conditions for Optimality
Kuhn-Tucker Conditions

\[\nabla g_1 = 0 \]
\[\nabla g_3 = 0 \]
\[\nabla g_2 = 0 \]

\[F = \text{constant} \]
Unconstrained Optimization

- Find X to minimize F(X) and where the Kuhn-Tucker condition reduces to $\nabla F(X) = 0$

- Many different algorithms
 - Powell’s method (zero order), steepest descent, Fletcher-Reeves, Davidon-Fletcher-Powell, Broydon-Fletcher-Goldfard-Shanno (first order), Newton’s method (second order)

- Repetitive process in which a search direction is found along which an optimal step size is determined (repeat from finding a new search direction)
The One-Dimensional Search

- Recall that at the q-th iteration, the design variable vector is obtained as $X^q = X^{q-1} + \alpha S^q$
- In the above relation, α is the unknown and hence the objective function $F(X)$ becomes a function of α as $F(\alpha)$

$$F(\alpha) = F(X^{q-1} + \alpha S^q)$$

- Two widely used methods
 - polynomial interpolation
 - golden section search
Polynomial Interpolation

- Select an order for the polynomial to fit, let’s say a second order polynomial

\[F(\alpha) = a + b\alpha + c\alpha^2 \]

- Further, let us assume that we have computed \(F(\alpha)\) for \(\alpha=0,1,2\) as \(F(\alpha=0)=10\), \(F(\alpha=1)=6\), and \(F(\alpha=2)=8\)

- We have 3 equations in 3 unknowns \(a\), \(b\) and \(c\)

\[
\begin{align*}
 a + b(0) + c(0) &= 10 \\
 a + b(1) + c(1) &= 6 \\
 a + b(2) + c(4) &= 8
\end{align*}
\]

- From which we solve \(a=10\), \(b=-7\), \(c=3\)
Polynomial Interpolation

- The function $F(\alpha)$ the assumes the form

$$F(\alpha) = 10 - 7\alpha + 3\alpha^2$$

- The value of α yielding a minimum of $F(\alpha)$ is obtained from

$$\frac{\partial F}{\partial \alpha} = -7 + 6\alpha = 0$$

$$\alpha^* = 7/6$$

- this is the optimal step size from polynomial interpolation
Golden-Section Search

- Based on the golden-section ratio that has been encountered in nature
 - first find bounds on the minimum of a function
 - objective then is to pick two points within the bounded interval so as to shrink the bounds as rapidly as possible about the minimum point
 \[
 \alpha_1 = \alpha_L + \theta (\alpha_U - \alpha_L) \\
 \alpha_2 = \alpha_U - \theta (\alpha_U - \alpha_L)
 \]

\[\theta^{-1} = 1.618034\] is the golden section ratio
Golden-Section Search
Graphical Interpretation
Golden Section Search - Example
Ref. Haftka and Gurdal, Structural Optimization

- Find x by golden section that minimizes $f(x)=x(x-3)$ on the interval of search $0 \leq x \leq 2$

 \begin{align*}
 x_1 &= 0 + 0.382(2) = 0.764 \quad f(x_1) = -1.708 \\
 x_2 &= 2 - 0.382(2) = 1.236 \quad f(x_2) = -2.180
\end{align*}

- Since $f(x_2) < f(x_1)$ the new interval for search is $(x_1, 2)$ and the next point is located at

 \begin{align*}
 x_3 &= 2 - 0.382(2 - 0.764) = 1.5278 \quad f(x_3) = -2.249
\end{align*}

- Since $f(x_3) < f(x_2)$ we reject the interval (x_1, x_2). The new interval for search is $(x_2, 2)$ and the next point is located at

 \begin{align*}
 x_4 &= 2 - 0.382(2 - 1.236) = 1.7082 \quad f(x_4) = -2.207
\end{align*}
Golden Section Search - Example

- Since \(f(x_4) < f(x_2) < f(2) \) we reject the interval \((x_4, 2)\). The new interval for search is \((x_2, x_4)\) and the next point is located at
 \[
x_5 = 1.236 + 0.382(1.7082 - 1.236) = 1.4164 \quad f(x_5) = -2.243
 \]

- Show to yourself that the interval to be retained is \((x_2, x_4)\) and the next point is located at
 \[
x_6 = 1.5967 \quad f(x_6) = -2.241
 \]

- The exact solution is located at \(x^* = 1.5 \) and \(f(x^*) = -2.25 \)
Summary - One-Dimensional Search

- Golden section search is easy to implement but is not as efficient
- Polynomial interpolation is efficient - care is required in its implementation
 - work with no higher than cubic polynomial
- Implementation of one-dimensional search is perhaps the most difficult aspect of coding an optimization algorithm
Search Direction
Steepest Descent

- Search direction \(S \) is taken to be the gradient of the objective function

\[
S = -\nabla F(X)
\]

- Compute step size in direction \(S \) and update design variable vector as

\[
X^q = X^{q-1} + \alpha S^q
\]

- Repeat until convergence

- METHOD IS VERY INEFFICIENT AND NOT RECOMMENDED FOR ANY PROBLEM OF PRACTICAL INTEREST
Search Direction

Fletcher-Reeves Conjugate Direction

- For the first step $q=1$, set the search direction $S = -\nabla F(X)$
- Else define a quantity β as
 \[
 \beta = \frac{|\nabla F(X^q)|^2}{|\nabla F(X^{q-1})|^2}
 \]
- Set $S = -\nabla F(X^q) + \beta S^{q-1}$ and search in that direction.
- Repeat by updating β and computing new search direction
Fletcher-Reeves Conjugate Direction

- Requires function values and gradients, is easy to implement and requires little storage
- Converges in N or fewer iterations for quadratic problems in N variables - restart with steepest descent every $N+1$ iterations if progress in objective function decrease slows down
- Simple modification of the steepest descent method speeds up the performance considerably
- Variable metric methods like the DFP and BFGS have similar performance - use gradients to create approximations to the Hessian matrix (quasi-Newton methods)
 - higher storage requirements
Newton’s Method

• The oldest second order method for minimizing a n-dimensional function
• The general update equation required is of the form

\[X^q = X^{q-1} - \alpha Q_{q-1}^{-1} \nabla F (X^{q-1}) \]

• Here Q is the Hessian of the objective function, and \(\alpha \) is obtained by a 1-D search along the Newton direction
• Q=I is the steepest descent solution
• For a quadratic function, it can be shown that the update relation reaches the optimum solution in one step with \(\alpha=1 \)

\[X^* = X^0 - [Q(X^0)]^{-1} \nabla F (X^0) \]
Constrained Function Minimization

- Optimization algorithms
 - linear programming, feasible useable search directions, generalized reduced gradients
- Optimization strategies
 - sequential unconstrained minimization, sequential linear programming, sequential quadratic programming
Changes in One-Dimensional Search

- Objective and all constraints are approximated as polynomials
 - for objective, step size is chosen to minimize F
 - for constraints, seek step size so that $g_j(\alpha) = 0$
 - for all possible step sizes computed in this manner, choose the smallest one
- Several possibilities
 - initially feasible but no active constraints
 - initially feasible and active constraints
 - initially infeasible, active and violated constraints
 - initially infeasible, no feasible solution
Changes in One-Dimensional Search

- Estimating initial step size
 - too large, quality of polynomial fit will be poor
 - too small, many steps required to bracket solution
- Use maximum amount of information
 - if bounds are found with first step, use a linear fit to constraints to estimate step size that will overcome violations in constraints or hit new constraints and use quadratic fit on objective to estimate minimum
 - increase polynomial order as more information is accumulated
Penalty Function Methods

- Create a set of pseudo-objective functions that will penalize constraint violations
- Use well established unconstrained minimization techniques to minimize the pseudo-objective
 - exterior penalty function
 - interior penalty function and extended interior penalty
 - augmented Lagrange multiplier
Exterior Penalty Function
Single Variable

- Pseudo-objective

\[\bar{F} = F + R \sum_{j=1}^{m} \max[0, g_j(X)]^2 + R \sum_{k=1}^{p} [h_k(X)]^2 \]

- Start with small \(R \) and increase after each unconstrained minimization
Interior Penalty Function

• Reciprocal function

\[
\bar{F} = F + R' \sum_{j=1}^{m} \frac{-1}{g_j(X)} + R \sum_{k=1}^{p} [h_k(X)]^2
\]

• Log function

\[
\bar{F} = F + R' \sum_{j=1}^{m} - \log[-g_j(X)] + R \sum_{k=1}^{p} [h_k(X)]^2
\]
Interior Penalty Function

Start with small R' and decrease after each minimization
Summary of SUMT

- Large number of function evaluations - computational expense
- Exterior method has best chance of locating true optimum in the presence of multiple relative optima
- Although these were popular 35-40 years ago, are now receiving increased attention in large scale problems
 - with use of approximation methods
Feasible-Useable Search

- Developed in 1960 by Zoutendijk and is coded in two widely used optimizers - CONMIN and ADS
- Is very effective in rapidly finding a near optimal design
- Used only for inequality constrained problems although the modified version does have provision for handling equality constraints
- Method finds a direction that is both feasible and useful, and then does a 1-D search in that direction
 - central to the search direction determination strategy is the concept of determining the active constraints
Active Constraint Set

- Constraint $g_j(X)$ is considered active if $g_j(X) \geq CT$
 - initially CT=-0.05 to “trap” the almost active constraints
 - CT is reduced during optimization until CT= - CTMIN
- $g_j(X)$ is considered violated if
Feasible-Useable Search
Search Direction

• If no constraints are active or violated, use the steepest descent direction at the first step and the Fletcher-Reeves conjugate direction thereafter
 – restart with steepest descent every N iterations or whenever progress is slow
• In the presence of active constraints, a sub-problem is solved as follows

 \[\text{Maximize} \quad \beta \]

 \[\text{Subject to:} \]

 \[\nabla F(X)^T S^q + \beta \leq 0 \quad \text{(useable direction)} \]

 \[\nabla g_j(X)^T S^q + \theta_j \beta \leq 0 \quad (j \in J - \text{feasible direction}) \]
Feasible-Useable Search
Search Direction

- J is the set of active constraints
- θ_j is the push-off factor and is computed as follows
 \[
 \theta_j = \left[1 - \frac{g_j(X^{q-1})}{CT} \right]^2 \quad \text{for} \quad g_j(X^{q-1}) > CT
 \]
- The search direction must also be bounded
 \[
 \{S^q\}^T \{S^q\} \leq 1
 \]
Geometric Interpretation

\[g \]
\[\nabla F = \text{constant} \]
\[\nabla g_1 \]
\[S_{\theta=0}, S_{\theta=1}, S_{\theta=\infty} \]
\[g_1 = 0 \]

\[X_1 \]
\[X_2 \]
Sequential Linear Programming

- Linearize both the objective and constraint functions at the current design point
 - impose move limits on the design variables to preserve the integrity of the linear approximations
 - solve the resulting linear programming problem
 - repeat above steps, successively reducing the move limits in the later stages of the optimization process

- Method is very widely used although not favored by “theoreticians”
Sequential Linear Programming

- The linearized equations

\[
\bar{F} = F(X_0) + \nabla F(X_0)^T \Delta X
\]

\[
\bar{g}_j = g_j(X_0) + \nabla g_j(X_0)^T \Delta X \quad j = 1, m
\]

\[
\Delta X = X - X_0
\]

- Move limits of +/- 20% are widely used
Sequential Quadratic Programming

- Has become quite popular over the past few years
 - create a quadratic approximation to the Lagrangian
 - create linear approximations to the constraints
 - solve the quadratic problem for the search direction
 - perform one-dimensional search with penalty functions to avoid constraint violations
 - update the approximations
 - cycle to convergence
Sequential Quadratic Programming

• The search direction S is computed from the subproblem

$$\text{Minimize } Q(S) = F(X) + \nabla F(X)^T S + \frac{1}{2} S^T BS$$

$$\text{Subject to :}$$

$$\nabla g_j(X)^T S + \gamma g_j(X) \leq 0$$

$$\nabla h_k(X)^T S + \gamma h_k(X) = 0$$

• $\gamma = 0.9$ when constraint is violated and zero otherwise - it is used to overcome constraint violations
Sequential Quadratic Programming

- One-dimensional search
 - minimize the exterior penalty function

\[
\bar{F} = F + R \sum_{j=1}^{m} \lambda_j \max[0, g_j(X)]^2 + R \sum_{k=1}^{p} \lambda_{k+m} [h_k(X)]^2
\]

- where \(\lambda_j \) are the Lagrange multipliers from the quadratic sub-problem and \(R \) is a large penalty multiplier
Discrete Variable Optimization

- Available methods include
 - rounding
 - suboptimal designs or even infeasible designs
 - dual methods
 - limited applications
 - branch and bound
 - correct approach for convex problems
 - very expensive for large scale problems
Branch and Bound Algorithm

- Example problem

\[\text{Minimize} \quad F(X) = X_1^2 + X_2^2 \]

\[\text{Subject to} \]

\[g(X) = \frac{1}{X_1} + \frac{1}{X_2} - 2 \leq 0 \quad \text{inequality} \]

\[X_1 \geq 0.2 \quad X_2 \geq 0.2 \quad \text{side} \]

\[X_1 \in (0.3, 0.7, 0.9, 1.2, 1.5, 1.8) \]

\[X_2 \in (0.4, 0.8, 1.1, 1.4, 1.6) \]

- The continuous solution is \(F(X) = 2.0, X_1 = 1.0, X_2 = 1.0 \)
Branch and Bound Algorithm

- Design space may contain a mix of discrete, continuous, or integer variables
- Starting from a continuous solution, start to branch on one variable at a time
 - the continuous solution is a lower bound on the mixed variable problem
 - each branched problem is a continuous optimization problem
 - solution of each branch continues unless no feasible solution is found or the objective function value indicates a “fathomed” path
- Illustrated by solution of previously defined problem
Branch and Bound - Solution

F=2.0, X1=1, X2=1
Continuous Optimum

F=2.17, X1=1.2, X2=0.86

F=2.56, X1=0.78, X2=1.4

F=2.77, X1=0.9, X2=1.4
Discrete Solution

F=2.77, X1=0.9, X2=1.4
Discrete Solution

F=2.81, X1=1.5, X2=0.75
Discrete Solution

No Feasible Solution

F=2.84, X1=1.5, X2=0.8
Discrete Solution

F=2.81, X1=1.5, X2=0.75
Discrete Solution
Branch and Bound Solution

- If function values are inexpensive, use actual function evaluations
- For costly function evaluations, use approximations that are of high quality
- Poor quality approximations will yield
 - infeasible discrete solutions
 - non-optimal discrete solutions