Decomposition Methods in MDO
Decomposition Methods in Design

• Decomposition strategies have been used in the design of multidisciplinary systems
 – hierarchic decomposition
 – non-hierarchic decomposition
 – hybrid decomposition

• Elements of decomposition
 – partitioning
 – co-ordination
Decomposition Methods in Design

Hierarchic

Airframe
- Wing
- Fuselage
- Torque Box
- Spar

Non-Hierarchic

Aerodynamics
- Structures
- Controls

Hybrid

Aerodynamics
- Structures
- Controls
- Torque Box
- Spar
In general, the minimal weight corresponding to $A_2=0$ will never be achieved.
Sequential Approach

- Aerodynamics
- Structural Design
- Aeroelastic Design
- Control Systems

Each discipline may contain inner loops of iteration.

Initial Concept

Interdisciplinary Iterations
Hierarchic Decomposition Based Design

- **System level**
 - P - problem parameters
 - X - design variables
 - Q - behavior variables
 - Analysis $F(X,P,Q)=0$
 - Z passes as input to subsystem $Z=f(X,Q)$
- **Subsystem level**
 - x - local design variables
 - q - local behavior variables
 - analysis $f(Z,q,x)=0$

Diagram:

- SYSTEM
- Subsystem 1
- Subsystem 2
- $P \rightarrow X$
- $Z \rightarrow Z \leftarrow Z$
- $C_1^0 \leftarrow \frac{\partial C}{\partial X} \rightarrow C_2^0$
- No lateral interaction
Hierarchic Decomposition Based Design

- Subsystem level optimization
 - \(g = g(q(Z(X),x) \leq 0 \) and \(h = h(Z(X),x) = 0 \) are the inequality and equality constraints respectively
 - \(C \) is a cumulative constraint representation of all inequality constraints
- Optimization problem statement

\[
\text{Minimize } C \text{ to obtain } C_i^0 \\
\text{Subject to } h = 0
\]

- Pass back \(C_1^0, \frac{\partial C}{\partial X} \) and \(C_2^0, \frac{\partial C}{\partial X} \) to the system level
Hierarchic Decomposition Based Design

- System level optimization
 - F is system objective $F = F(Q(X))$
 - G are system constraints $G = G(Q(X))$
- Mathematical problem statement

$$\begin{align*}
\text{Minimize} & \quad F(X) \\
\text{Subject to} & \quad G_j \leq 0; \quad C_i \leq 0 \text{ for all } i \text{ subsystems}
\end{align*}$$

- Here C_i are obtained as a linear extrapolation

$$C_i = C_i^0 + \frac{dC}{dX} \Delta X$$

$$\frac{dC}{dX} = \frac{\partial C}{\partial Z} \frac{\partial Z}{\partial X}$$

\uparrow System sensitivity

\uparrow Subsystem optimal sensitivity
Hierarchic Decomposition Based Design

- Errors in extrapolation due to active constraint switching
- Data management gets involved in realistic, large-scale MDO problems
- Handling of equality constraints is required as these provide system to subsystem coordination - proves to be problematic!
Non-Hierarchic Decomposition Based Design - CSSO

- Concurrent Subspace Optimization - Overview

Minimize \(f(x^k) \)

Subject to: \(C^p \leq C^{po} [s^p (1 - r_k^p) + (1 - s^p) t_k^p] \quad p = 1, nss \)

\[x^k_L \leq x^k \leq x^k_U \]

- \(C^p \) is a measure of all constraints in subspace \(p \), super and subscript \(p \) and \(k \) denote the influence of subspace \(p \) on subspace \(k \), \(r \)'s are the responsibility coefficients, \(t \)'s are the trade-off coefficients, and \(s \) are the switch parameters
CSSO Overview

- Optimum in each subspace is a function of r and t coefficients, and a second level problem needs to be solved - COP

\[
\begin{align*}
\text{Minimize} & \quad F = f^0 + \sum_p \sum_k \frac{df}{dr_k} \Delta r_k^p + \sum_p \sum_k \frac{df}{dt_k} \Delta t_k^p \\
\text{Subject to:} & \quad \sum_k r_k^p = 1 \quad p, k = 1, nss \\
& \quad \sum_k t_k^p = 0 \quad 0 \leq r_k^p \leq 1 \\
& \quad r_k^p \leq r_k^p \leq r_k^p \\
& \quad t_k^p \leq t_k^p \leq t_k^p
\end{align*}
\]

- COP yields a new set of r’s and t’s to be used in next round of SSO’s
Deficiencies in CSSO

- Coupling in CSSO is resolved through the use of linear or higher-order approximations. These require move limits to be placed on the design variables.
- The formulation of the coordination problem is based on an optimal sensitivity analysis procedure that cannot be regarded as robust.
- The use of heuristics in solving the coordination problem have proven to be of limited benefit, often introducing cycling and convergence problems.
- Sensitivity information is unavailable when dealing with discrete and integer design variables.
- Solution of GSE for computing global sensitivity information is problematic in terms of the required computational effort, and numerical problems such as singularity and ill-conditioning.
Collaborative Optimization

 coupled

 uncoupled

 target state

 optimizer

 uncoupled
Collaborative Optimization - Example

X_{F1} - cross sectional dimensions of stringers and skins

$X_M - Y_{21}$ and X_{shared}

$g(X)$ - constraints on stress and displacements

X_{shared} - wing taper, wing sweep, wing aspect ratio

X_{F2} - airfoil leading edge radius and camber

$X_M - Y_{12}$ and X_{shared}

$g(X)$ - constraints on pressure distribution gradients
Collaborative Optimization - Procedure

Optimization 1
Minimize $J(X_1)$
subject to $g(X_1) \leq 0$

Optimization 2
Minimize $J(X_2)$
subject to $g(X_2) \leq 0$

System Level Optimization

Target Vector
$Z = \begin{Bmatrix} X_{shared}^T \\ Y_{12}^T \\ Y_{21}^T \end{Bmatrix}$

$J = \begin{Bmatrix} Y_{21} - Y_{21T} \\ X_{shared} - X_{sharedT} \\ Y_{12} - Y_{12T} \end{Bmatrix}^T \begin{Bmatrix} Y_{21} - Y_{21T} \\ X_{shared} - X_{sharedT} \\ Y_{12} - Y_{12T} \end{Bmatrix}$

$J = \begin{Bmatrix} Y_{12} - Y_{12T} \\ X_{shared} - X_{sharedT} \\ Y_{21} - Y_{21T} \end{Bmatrix}^T \begin{Bmatrix} Y_{12} - Y_{12T} \\ X_{shared} - X_{sharedT} \\ Y_{21} - Y_{21T} \end{Bmatrix}$
Collaborative Optimization
System Level Optimization

- Find Z (system level variables shared by different modules) to minimize $F(Z)$ (system level objective)
- Satisfy $J_i=0$ for all modules I
 - here J_i is obtained from extrapolation based on optimal problem parameter sensitivity from each module

$$J_i = (J_i)^{old} + \left[\frac{\partial J_i}{\partial Z} \right]^T \{\Delta Z\}$$
Collaborative Optimization Summary

- Each module optimized separately - can be done concurrently
- System level coordination optimization is generally with small number of variables
- Each discipline is allowed to function autonomously
- There is no explicit system analysis - instead we have a situation akin to simultaneous analysis and design